Scientometrics

, Volume 102, Issue 1, pp 357–364 | Cite as

Publish (in a group) or perish (alone): the trend from single- to multi-authorship in biological papers

  • João Carlos Nabout
  • Micael Rosa Parreira
  • Fabrício Barreto Teresa
  • Fernanda Melo Carneiro
  • Hélida Ferreira da Cunha
  • Luciana de Souza Ondei
  • Samantha Salomão Caramori
  • Thannya Nascimento Soares
Article

Abstract

The global number of papers in different areas has increased over the years. Additionally, changes in academic production scenarios, such as the decrease in the relative number of single-authored (SA) papers, have been observed. Thus, the aims of this study are to assess the trend of SA papers in four subareas of biology and also to estimate the year when 0.1 % of papers in these subareas will be SA (considering two adjusted models). The subareas investigated were Ecology, Genetics, Zoology and Botany. Our hypothesis is that all subareas show a decay in the number of SA papers. However, this pattern is more pronounced in subareas that were originally interdisciplinary (Genetics and Ecology) than in disciplinary areas (Zoology and Botany). In fact, SA papers have declined over the years in all subareas of biology, and according to the best model (Akaike Criteria), the first area that will have 0.1 % SA papers is Genetics, followed by Ecology. A partial regression indicates that the decrease in SA papers can be related to the increase in the number of authors and number of citations, suggesting the greater scientific impact of interdisciplinary research. However, other variables (e.g., political, linguistic and behavioral) can contribute to the decrease in SA papers. We lastly conclude that the number of SA papers in all subareas of biology in the coming years might continue decreasing and becoming rare, perhaps even to the point of extinction (to use a very common term in biology). In addition, all subareas of biology have become more interdisciplinary, combining the knowledge of various authors (and perhaps authors from different areas). The consequence of this approach is increasingly collaborative work, which may facilitate the increased success of the group.

Keywords

Ecology Genetics Zoology Botany Non-linear models 

Supplementary material

11192_2014_1385_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 22 kb)
11192_2014_1385_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 19 kb)
11192_2014_1385_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 18 kb)

References

  1. Abt, H. A. (2007). The future of single-authored papers. Scientometrics, 73(3), 353–358.CrossRefGoogle Scholar
  2. Adams, J. D., Grant, G. C., Clemmons, J. R., & Stephan, P. E. (2005). Scientific teams and institutional collaborations: Evidence from US universities, 1981–1999. Research Policy, 34(3), 259–285.CrossRefGoogle Scholar
  3. Barré, R. (2005). S&T indicators for policy making in a change science—Society relationship. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 115–132). Berlin: Springer.CrossRefGoogle Scholar
  4. Bordons, M., Morillo, F., & Gómez, I. (2005). Analysis of cross-disciplinary research through bibliometric tolls. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 437–456). Dordrecht: Springer.CrossRefGoogle Scholar
  5. Carneiro, F. M., Nabout, J. C., & Bini, L. M. (2008). Trends in the scientific literature on phytoplankton. Limnology, 9(2), 153–158.CrossRefGoogle Scholar
  6. Davey, J. W., Hohenlohe, P. A., Etter, P. D., et al. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12(7), 499–510.CrossRefGoogle Scholar
  7. De Meis, L., Velloso, A., Lannes, D., et al. (2003). The growing competition in Brazilian science: Rites of passage, stress and burnout. Brazilian Journal of Medical and Biological Research, 36(9), 1135–1141.CrossRefGoogle Scholar
  8. Fischer, J., Ritchie, E., & Hanspach, J. (2012). Academia’s obsession with quantity. Trends in Ecology and Evolution, 27(9), 473–474.CrossRefGoogle Scholar
  9. Glänzel, W. (2002). Coauthorship patterns and trends in the sciences (1980–1998): A bibliometric study with implications for database indexing and search strategies. Library Trends, 50(3), 461–473.Google Scholar
  10. Glänzel, W., & Schubert, A. (2005). Analyzing scientific network through co-authorship. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 257–276). Dordrecht: Springer.CrossRefGoogle Scholar
  11. Hamilton, D. P. (1990). Publishing by—and for?—The numbers. Science, 250(4986), 1331–1332.CrossRefGoogle Scholar
  12. Holmgren, M., & Schnitzer, S. A. (2004). Science on the rise in developing countries. PLoS Biology, 2(1), e1. doi:10.1371/journal.pbio.0020001.CrossRefGoogle Scholar
  13. Hsu, J. W., & Huang, D. W. (2011). Correlation between impact and collaboration. Scientometrics, 86(2), 317–324.CrossRefGoogle Scholar
  14. Hudson, J. (1996). Trends in multi-authored papers in economics. Journal of Economic Perspectives, 10(3), 153–158.CrossRefGoogle Scholar
  15. Jaffe, K., Caicedo, M., Manzanares, M., et al. (2013). Productivity in physical and chemical science predicts the future economic growth of developing countries better than other popular indices. PLoS ONE, 8(6), e66239. doi:10.1371/journal.pone.0066239.CrossRefGoogle Scholar
  16. Kinchin, I. M. (2011). Visualising knowledge structures in biology: Discipline, curriculum and student understanding. Journal of Biological Education, 45(4), 183–189. doi:10.1080/00219266.2011.598178.CrossRefGoogle Scholar
  17. King, D. A. (2004). The scientific impact of nations. Nature, 430, 311–316.CrossRefGoogle Scholar
  18. Loyola, R. D., Diniz-Filho, J. A. F., & Bini, L. M. (2012). Obsession with quantity: A view from the south. Trends in Ecology and Evolution, 27(11), 585.CrossRefGoogle Scholar
  19. Mackay, A. (1974). Publish or perish. Nature, 250(5469), 698. doi:10.1038/250698c0.CrossRefGoogle Scholar
  20. Mattsson, P., Laget, P., Nilsson, A., & Sundberg, C. J. (2008). Intra-EU vs. extra-EU scientific co-publication patterns in EU. Scientometrics, 75(3), 555–574.CrossRefGoogle Scholar
  21. Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on earth and in the ocean? PLoS Biology, 9(8), e1001127.CrossRefGoogle Scholar
  22. Nabout, J. C., Carvalho, P., Uehara-Prado, M., Borges, P. P., Machado, K. B., Haddad, K. B., et al. (2012). Trends and biases in global climate change literature. Natureza & Conservação, 10(1), 45–51.CrossRefGoogle Scholar
  23. Nabout, J. C., Rocha, B. S., Carneiro, F. M., & Sant’Anna, C. L. (2013). How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. Biodiversity and Conservation, 22(12), 2907–2918.CrossRefGoogle Scholar
  24. Nelson, D. J., & Brammer, C. N. (2008). Women in science: A top-down approach. Science, 320(5880), 1159–1160. doi:10.1126/science.320.5880.1159b.CrossRefGoogle Scholar
  25. Padial, A. A., Nabout, J. C., Siqueira, T., Bini, L. M., & Diniz-Filho, J. A. F. (2010). Weak evidence for determinants of citation frequency in ecological articles. Scientometrics, 85(1), 1–12.CrossRefGoogle Scholar
  26. Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.CrossRefGoogle Scholar
  27. Price, D. J. de Solla. (1963). Little science, big science. New York: Columbia University Press.Google Scholar
  28. Pyšek, P., Hulme, P. E., Meyerson, L. A., et al. (2013). Hitting the right target: Taxonomic challenges for, and of, plant invasions. AoB Plants, 5, plt042. doi:10.1093/aobpla/plt042.CrossRefGoogle Scholar
  29. Schlotterer, C. (2004). The evolution of molecular markers—Just a matter of fashion? Nature Reviews Genetics, 5, 63–69.CrossRefGoogle Scholar
  30. Shwarts, A., Muratet, A., Simon, L., & Julliard, R. (2013). Local and management variables outweigh landscape effects in enhancing the diversity of different taxa in a big metropolis. Biological Conservation, 157, 285–292.CrossRefGoogle Scholar
  31. Tjorve, E. (2003). Shapes and functions of species–area curves: A review of possible models. Journal of Biogeography, 30(6), 827–835.CrossRefGoogle Scholar
  32. Vermeulen, N., Parker, J. N., & Penders, B. (2013). Understanding life together: A brief history of collaboration in biology. Endeavour, 37(3), 162–171.CrossRefGoogle Scholar
  33. Whitfield, J. (2008). Collaboration: Group theory. Nature, 455(7214), 720–723.CrossRefGoogle Scholar
  34. Wutchy, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • João Carlos Nabout
    • 1
  • Micael Rosa Parreira
    • 1
  • Fabrício Barreto Teresa
    • 1
  • Fernanda Melo Carneiro
    • 2
  • Hélida Ferreira da Cunha
    • 1
  • Luciana de Souza Ondei
    • 1
  • Samantha Salomão Caramori
    • 1
  • Thannya Nascimento Soares
    • 3
  1. 1.Unidade Universitária de Ciências Exatas e Tecnológica (UnUCET)Universidade Estadual de GoiásAnápolisBrazil
  2. 2.Universidade Estadual de Goiás, Unidade Universitária de IporáIporáBrazil
  3. 3.Universidade Federal de GoiásGoiâniaBrazil

Personalised recommendations