Scientometrics

, Volume 101, Issue 1, pp 623–661 | Cite as

Visualizing the structure and bridges of the intellectual property management and strategy literature: a document co-citation analysis

  • Francesco Paolo Appio
  • Fabrizio Cesaroni
  • Alberto Di Minin
Article

Abstract

This article uses document co-citation analysis to objectively explore the underlying structure of the intellectual property research domain, taken from a managerial and strategic standpoint. The goal of this study is identifying its main research areas, understanding its current state of development and suggesting potential future directions, by analyzing the co-citations from 181 papers published between 1992 and 2011 in the most influential academic journals. Five main clusters have been identified, mapped, and labeled as follows: Economics of patent system, technological and institutional capabilities, university patenting, intellectual property exploitation, and division of labor. Their most active areas on this topic, and the most influential and co-cited papers have been identified and described. Also, intra- and inter-cluster knowledge base diversity has been assessed by using indicators stemming from the domains of information theory and biology. A t test has been performed to assess the significance of the inter-cluster diversity. The knowledge bases of these five clusters are significantly diverse, this meaning that they are five co-existing paradigms.

Keywords

Document co-citation analysis DCA Intellectual property IP management IP strategy Cluster analysis Diversity analysis 

JEL Classification

O34 O32 M10 

References

  1. Acedo, F. J., & Casillas, J. C. (2005). Current paradigms in the international management field: An author co-citation analysis. International Business Review, 14(5), 619–639.CrossRefGoogle Scholar
  2. Adams, J. E., & McCune, E. D. (1979). Application of the generalized jack-knife to Shannon’s measure of information used as an index of diversity. In J. F. Grassle, G. P. Patil, W. Smith, & C. Taille (Eds.), Ecological diversity in theory and practice (p. 117). Fairland, MD: International Co-operative Publishing House.Google Scholar
  3. Arora, A., Fosfuri, A., & Gambardella, A. (2001). Markets for technology. NY: MIT Press.Google Scholar
  4. Arrow, K. J. (1962). Economic welfare and the allocation of resources for invention. In R. R. Nelson (Ed.), The rate and direction of inventive activity (pp. 609–625). Princeton, NJ: Princeton University Press.Google Scholar
  5. Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120.CrossRefGoogle Scholar
  6. Bercovitz, J. E. L., & Feldman, M. P. (2007). Fishing upstream: Firm innovation strategy and university research alliances. Research Policy, 36(7), 930–948.CrossRefGoogle Scholar
  7. Bowman, K. O., Hutchenson, K., Odum, E. P., & Shenton, L. R. (1971). Comments on the distribution of indices of diversity. In G. P. Patil, E. C. Pielou, & W. E. Waters (Eds.), Statistical ecology (pp. 315–359). London: Pennsylvanian State University Press.Google Scholar
  8. Bozeman, B. (2000). Technology transfer and public policy: A review of research and theory. Research Policy, 29(4/5), 627–655.CrossRefGoogle Scholar
  9. Cesaroni, F., & Piccaluga, A. (2013). Operational challenges and ST’s proposed solutions to improve collaboration between IP and R&D in innovation processes. California Management Review, 55(4), 143–156.CrossRefGoogle Scholar
  10. Chen, C., Cribbin, T., Macredie, R., & Morar, S. (2002). Visualizing and tracking the growth of competing paradigms: Two case studies. Journal of the American Society for Information Science and Technology, 53(8), 678–689.CrossRefGoogle Scholar
  11. Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of co-citation clusters: a multiple-perspective co-citation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409.CrossRefGoogle Scholar
  12. Cohen, W. M., & Levinthal, D. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.CrossRefGoogle Scholar
  13. Cohen, W. M., Nelson, R. R., & Walsh, J. P. (2000). Protecting their intellectual assets: Appropriability conditions and why U.S. manufacturing firms patent (or not). NBER Working Paper 7522.Google Scholar
  14. Coombes, P. H., & Nicholson, J. D. (2013). Business models and their relationship with marketing: A systematic literature review. Industrial Marketing Management, 42(5), 656–664.CrossRefGoogle Scholar
  15. Daniels, J. D. (1991). Relevance in international business research: A need for more linkages. Journal of International Business Studies, 22(2), 177–186.MathSciNetCrossRefGoogle Scholar
  16. David, R. J., & Han, S. K. (2004). A systematic assessment of the empirical support for transaction cost economics. Strategic Management Journal, 25(1), 39–58.CrossRefGoogle Scholar
  17. Davis, J. L., & Harrison, S. S. (2001). Edison in the boardroom: How leading companies realize value from their intellectual assets. New York: Wiley.Google Scholar
  18. Di Guardo, M. C., & Harrigan, K. R. (2011). Mapping research on strategic alliances and innovation: A co-citation analysis. The Journal of Technology Transfer, 37(6), 789–811.CrossRefGoogle Scholar
  19. Di Minin, A., & Faems, D. (2013). Building appropriation advantage: An introduction to the special issue on intellectual property management. California Management Review, 55(4), 7–14.CrossRefGoogle Scholar
  20. Di Stefano, G., Peteraf, M., & Verona, G. (2010). Dynamic capabilities deconstructed: A bibliographic investigation into the origins, development, and future directions of the research domain. Industrial and Corporate Change, 19(4), 1187–1204.CrossRefGoogle Scholar
  21. DuBois, F. L., & Reeb, D. (2000). Ranking the international business journals. Journal of International Business Studies, 31(4), 689–704.CrossRefGoogle Scholar
  22. Eom, S.B. (2004). Author cocitation analysis using custom bibliographic databases: An exploratory tool for digging up reference disciplines. ECIS 2004 Proceedings. Paper 31.Google Scholar
  23. Ernst, H., Legler, S., & Lichtenthaler, U. (2010). Determinants of patent value: Insights from a simulation analysis. Technological Forecasting and Social Change, 77(1), 1–19.CrossRefGoogle Scholar
  24. Fleck, L. (1935). The genesis and development of a scientific fact. (trans. 1979), Chicago, IL: University of Chicago Press. (Orig. in German).Google Scholar
  25. Gans, J. S., Hsu, D. H., & Stern, S. (2002). When does start-up innovation spur the gale of creative destruction? RAND Journal of Economics, 33(4), 571–586.CrossRefGoogle Scholar
  26. Gans, J. S., Hsu, D. H., & Stern, S. (2008). The impact of uncertain intellectual property rights on the market for ideas: Evidence from patent grant delays. Management Science, 54(5), 982–997.CrossRefGoogle Scholar
  27. Gans, J. S., & Stern, S. (2003). The product market and the market for “ideas”: Commercialization strategies for technology entrepreneurs. Research Policy, 32(2), 333–350.CrossRefGoogle Scholar
  28. Garfield, E. (1980). Is information retrieval in the arts and humanities inherently different from that in science?: The effect that ISI’s citation index for the arts and humanities is expected to have on future scholarship. Library quarterly, 50(1), 40–57.CrossRefGoogle Scholar
  29. Granstrand, O. (2000). The economics and management of intellectual property. Edward Elgar.Google Scholar
  30. Griliches, Z. (1990). Patent statistics as economic indicators: A survey. Journal of Economic Literature, 28, 1661–1707.Google Scholar
  31. Grindley, P. C., & Teece, D. J. (1997). Managing intellectual capital: Licensing and cross-licensing in semiconductors and electronics. California Management Review, 39(2), 8–41.CrossRefGoogle Scholar
  32. Hall, B. H., & Ziedonis, R. H. (2001). The patent paradox revisited: An empirical study of patenting in the US semiconductor industry, 1979–1995. RAND Journal of Economics, 32(1), 101–128.CrossRefGoogle Scholar
  33. Hanel, P. (2006). Intellectual property rights and business management practices: A survey of the literature. Technovation, 26(8), 895–931.CrossRefGoogle Scholar
  34. Harabi, N. (1995). Appropriability of technical innovations: An empirical analysis. Research Policy, 24(6), 981–992.CrossRefGoogle Scholar
  35. Harvey, C., Kelly, A., Morris, H., & Rowlinson, M. (Eds.). (2010). Academic journal quality guide, version 4. London: The Associations of Business Schools.Google Scholar
  36. Heller, M. A., & Eisenberg, R. S. (1998). Can patents deter innovation? The Anticommons in Biomedical Research. Science, 280(5364), 698–701.Google Scholar
  37. Heltshe, J. F., & Bitz, D. W. (1979). Comparing diversity measures in sampled communities. In F. Grassle, G. P. Patil, W. Smith, & C. Taille (Eds.), Ecological diversity in theory and practice (pp. 133–144). Fairland, MD: International Co-operative Publishing House.Google Scholar
  38. Henderson, R., & Cockburn, I. (1994). Measuring competence? Exploring firm effects in pharmaceutical research. Strategic Management Journal, 15, 63–84.CrossRefGoogle Scholar
  39. Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54(2), 427–432.CrossRefGoogle Scholar
  40. Hutcheson, K. (1970). A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology, 29, 151–154.CrossRefGoogle Scholar
  41. Idris, K. (2003). Intellectual property: a power tool for economic growth. Technical Report Publication N. 888, ISBN 92-805-1113-0, WIPO, Geneva.Google Scholar
  42. Jensen, R., & Thursby, M. (2001). Proofs and prototypes for sale: The licensing of university inventions. American Economic Review, 91(1), 240–259.CrossRefGoogle Scholar
  43. Junge, K. (1994). Diversity of ideas about diversity measurement. Scandinavian Journal of Psychology, 35(1), 16–26.CrossRefGoogle Scholar
  44. Junghans, C., & Levy, A. (2006). Intellectual property management: A guide for scientists, engineers, financiers, and managers. Weinheim: Wiley.Google Scholar
  45. Kenney, M., & Patton, D. (2009). Reconsidering the Bayh–Dole Act and the current university invention ownership model. Research Policy, 38(9), 1407–1422.CrossRefGoogle Scholar
  46. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: The University of Chicago Press.Google Scholar
  47. Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76, 5–13.CrossRefGoogle Scholar
  48. Lane, P. J., & Lubatkin, M. (1998). Relative absorptive capacity and interorganizational learning. Strategic Management Journal, 19(5), 461–477.CrossRefGoogle Scholar
  49. Levin, R. C., Klevorick, A. K., Nelson, R. R., Winter, S. G., Gilbert, R., & Griliches, Z. (1987). Appropriating the returns from industrial research and development. Brookings Papers on Economic Activity, 18(3), 783–831.CrossRefGoogle Scholar
  50. Linton, J. (2011). What does journal fit and focus look like: A visual representation. Technovation, 31(12), 613–614.CrossRefGoogle Scholar
  51. Locke, J., & Perera, H. (2001). The intellectual structure of international accounting in the early 1990s. The International Journal of Accounting, 36(2), 223–249.CrossRefGoogle Scholar
  52. Lu, J. W. (2003). The evolving contributions in international strategic management research. Journal of International Management, 9(2), 193–213.CrossRefGoogle Scholar
  53. Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  54. Magurran, A. E. (2004). Measuring biological diversity. Hoboken: Blackwell Publishing.Google Scholar
  55. Magurran, A. E., & McGill, B. J. (2011). Biological diversity: Frontiers in measurement and assessment. Oxford: Oxford University Press.Google Scholar
  56. Mansfield, E. (1986). Patents and innovation: An empirical study. Management Science, 32(2), 173–181.MathSciNetCrossRefGoogle Scholar
  57. March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science, 2(1), 71–87.MathSciNetCrossRefGoogle Scholar
  58. Margalef, R. (1972). Homage to Evelyn Hutchinson, or why there is an upper limit to diversity. Transactions of the Connecticut Academy of Arts and Sciences, 44, 211–235.Google Scholar
  59. McCain, K. W. (1990). Mapping authors in intellectual space: A technical overview. Journal of the American Society for Information Science, 41(6), 433–443.CrossRefGoogle Scholar
  60. McDonald, D. G., & Dimmick, J. (2003). The conceptualization and measurement of diversity. Communication Research, 30(1), 60–79.CrossRefGoogle Scholar
  61. Merges, R., & Nelson, R. R. (1990). On the complex economics of patent scope. Columbia Law Review, 90, 839–916.CrossRefGoogle Scholar
  62. Morris, H., Harvey, C., & Kelly, A. (2009). Journal ranking and the ABS journal quality guide. Management Decision, 47(9), 1441–1451.CrossRefGoogle Scholar
  63. Mowery, D. C., Nelson, R. R., Sampat, B. N., & Ziedonis, A. A. (2001). The growth of patenting and licensing by US universities: an assessment of the effects of the Bayh–Dole Act of 1980. Research Policy, 30(1), 99–119.CrossRefGoogle Scholar
  64. Mowery, D. C., Oxley, J. E., & Silverman, B. S. (1996). Strategic alliances and interfirm knowledge transfer. Strategic Management Journal, 17, 77–91.CrossRefGoogle Scholar
  65. Mulkay, M. J. (1972). The social process of innovation: A study in the sociology of science. London: MacMillan.Google Scholar
  66. Oxley, J. E. (1999). Institutional environment and the mechanisms of governance: the impact of intellectual property protection on the structure of inter-firm alliances. Journal of Economic Behavior & Organization, 38(3), 283–309.CrossRefGoogle Scholar
  67. Palfrey, J. (2012). Intellectual property strategy. Cambridge: MIT Press.Google Scholar
  68. Palmqvist, H. C., Sandberg, B., & Mylly, U. M. (2012). Intellectual property rights in innovation management research. Technovation, 32(9/10), 502–512.CrossRefGoogle Scholar
  69. Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics, 5, 285–307.CrossRefGoogle Scholar
  70. Persson, O. D., Danell, R., & Schneider, J. W. (2009). How to use bibexcel for various types of bibliometric analysis. In F. Åström, R. Danell, B. Larsen, & J. Schneider (Eds.), Celebrating scholarly communication studies: A Festschrift for Olle Persson at his 60th birthday (pp. 9–24). Leuven, Belgium: International Society for Scientometrics and Informetrics.Google Scholar
  71. Pielou, E. C. (1969). An introduction to mathematical ecology. New York: Wiley Interscience, John Wiley & Sons.MATHGoogle Scholar
  72. Pielou, E. C. (1975). Species abundance distributions. In Ecological diversity, pp. 19–31. New York: Wiley Interscience.Google Scholar
  73. Powell, W. W., Koput, K. W., & Smith-Doerr, L. (1996). Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology. Administrative Science Quarterly, 41(1), 116–145.CrossRefGoogle Scholar
  74. Small, H. (1980). Co-citation context analysis and the structure of paradigms. Journal of Documentation, 36(3), 183–196.MathSciNetCrossRefGoogle Scholar
  75. Small, H. (2003). Paradigms, citations, and maps of science: A personal history. Journal of the American Society for Information Science and Technology, 54(5), 394–399.MathSciNetCrossRefGoogle Scholar
  76. Sople, V. V. (2010). Managing intellectual property: The strategic imperative. New Delhi: PHI.Google Scholar
  77. Southwood, T. R. E., & Henderson, P. A. (2000). Ecological methods. Hoboken: Blackwell Science.Google Scholar
  78. Stephan, P. E. (1996). The economics of science. Journal of Economic Literature, 34(3), 1199–1235.Google Scholar
  79. Stirling, A. (1998). On the economics and analysis of diversity. SPRU Working Paper, no. 28.Google Scholar
  80. Teece, D. J. (1986). Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy. Research Policy, 15(6), 285–305.CrossRefGoogle Scholar
  81. Teece, D. J. (1998). Capturing value from knowledge assets: the new economy, markets for know-how, and intangible assets. California Management Review, 40(3), 55–79.CrossRefGoogle Scholar
  82. Teece, D. J. (2000). Managing intellectual capital. Oxford: Oxford University Press.Google Scholar
  83. Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509–533.CrossRefGoogle Scholar
  84. Teixeira, A. A., & Mota, L. (2012). A bibliometric portrait of the evolution, scientific roots and influence of the literature on university-industry links. Scientometrics, 93(3), 719–743.CrossRefGoogle Scholar
  85. Van Eck, N. J., & Waltman, L. (2007). Bibliometric mapping of the computational intelligence field. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(5), 625–645.CrossRefGoogle Scholar
  86. Van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651.CrossRefGoogle Scholar
  87. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  88. Van Eck, N. J., Waltman, L., Dekker, R., & Van den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405–2416.CrossRefGoogle Scholar
  89. Van Eck, N. J., Waltman, L., Van den Berg, J., & Kaymak, U. (2006). Visualizing the computational intelligence field. IEEE Computational Intelligence Magazine, 1(4), 6–10.Google Scholar
  90. Veerbek, A., Debackere, K., Luwel, M., & Zimmerman, E. (2002). Measuring progress and evolution in science and technology-I: The multiple uses of bibliometric indicators. International Journal of Management Reviews, 4(2), 179–211.CrossRefGoogle Scholar
  91. Waltman, L., Van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.CrossRefGoogle Scholar
  92. White, H. D. (2003). Pathfinder networks and author cocitation analysis: A remapping of paradigmatic information scientists. Journal of the American Society for Information Science and Technology, 54(5), 423–434.CrossRefGoogle Scholar
  93. White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355.Google Scholar
  94. Zahl, S. (1977). Jack-knifing an index of diversity. Ecology, 58(4), 907–913.CrossRefGoogle Scholar
  95. Zupic, I., & Čater, T. (2013). Bibliometric methods in management and organization: A review. Academy of Management Proceedings, 2013(1), 13426.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Francesco Paolo Appio
    • 1
  • Fabrizio Cesaroni
    • 2
    • 3
  • Alberto Di Minin
    • 3
  1. 1.Department of Energy Systems, Territory, and Construction Engineering (DESTEC), University of PisaPisaItaly
  2. 2.Department of Business AdministrationUniversity Carlos III de MadridGetafeSpain
  3. 3.Scuola Superiore Sant’AnnaIstituto di ManagementPisaItaly

Personalised recommendations