Scientometrics

, Volume 99, Issue 3, pp 973–998 | Cite as

Evolutionary events in a mathematical sciences research collaboration network

  • Jason Cory Brunson
  • Steve Fassino
  • Antonio McInnes
  • Monisha Narayan
  • Brianna Richardson
  • Christopher Franck
  • Patrick Ion
  • Reinhard Laubenbacher
Article

Abstract

This study examines long-term trends and shifting behavior in the collaboration network of mathematics literature, using a subset of data from Mathematical Reviews spanning 1985–2009. Rather than modeling the network cumulatively, this study traces the evolution of the “here and now” using fixed-duration sliding windows. The analysis uses a suite of common network diagnostics, including the distributions of degrees, distances, and clustering, to track network structure. Several random models that call these diagnostics as parameters help tease them apart as factors from the values of others. Some behaviors are consistent over the entire interval, but most diagnostics indicate that the network’s structural evolution is dominated by occasional dramatic shifts in otherwise steady trends. These behaviors are not distributed evenly across the network; stark differences in evolution can be observed between two major subnetworks, loosely thought of as “pure” and “applied”, which approximately partition the aggregate. The paper characterizes two major events along the mathematics network trajectory and discusses possible explanatory factors.

Keywords

Mathematics research Collaboration networks Evolving networks 

Mathematics Subject Classification

91D30 05C82 

Supplementary material

11192_2013_1209_MOESM1_ESM.pdf (257 kb)
PDF (256 KB)

References

  1. Aboelela, S. W., Larson, E., Bakken, S., Carrasquillo, O., Formicola, A., Glied, S. A., Haas, J., & Gebbie, K. M. (2007). Defining interdisciplinary research: Conclusions from a critical review of literature. Health Services Research, 42, 329–346. doi:10.1111/j.1475-6773.2006.00621.x.Google Scholar
  2. Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311(3–4), 590–614. doi:10.1016/S0378-4371(02)00736-7.CrossRefMATHMathSciNetGoogle Scholar
  3. Barrat, A., & Weigt, M. (2000). On the properties of small-world network models. The European Physical Journal B - Condensed Matter and Complex Systems, 13(3), 547–560. doi:10.1007/s100510050067.CrossRefGoogle Scholar
  4. Blondel, V. D., Guillaume, J. L., Hendrickx, J. M., & Jungers, R. M. (2007). Distance distribution in random graphs and application to network exploration. Physical Review E, 76, 066,101. doi:10.1103/PhysRevE.76.066101.CrossRefMathSciNetGoogle Scholar
  5. Borjas, G. J., & Doran, K. B. (2012). The collapse of the Soviet Union and the productivity of American mathematicians. Working Paper 17800, National Bureau of Economic Research. http://www.nber.org/papers/w17800.
  6. Chung, F., & Lu, L. (2002). The average distances in random graphs with given expected degrees. Proceedings of the National Academy of Sciences of the USA, 99(25), 15,879–15,882 doi:10.1073/pnas.252631999.CrossRefMathSciNetGoogle Scholar
  7. Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703. doi:10.1137/070710111.CrossRefMATHMathSciNetGoogle Scholar
  8. Davis, J. A. (1979). The Davis/Holland/Leinhardt studies: An overview. In P. W. Holland & S. Leinhardt (eds.), Perspectives on Social Network Research (pp. 51–62). New York: Academic Press.CrossRefGoogle Scholar
  9. Erdős, P., & Rényi, A. (1959). On random graphs, I. Publicacions Matemàtiques, 6, 290–297. http://www.renyi.hu/~p_erdos/Erdos.html#1959-11.
  10. Erdős, P., & Rényi, A. (1960). On the evolution of random graphs.Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.Google Scholar
  11. Fronczak, A., Fronczak, P., & Hołyst, J. A. (2004). Average path length in random networks. Physical Review E, 70, 056,110 doi:10.1103/PhysRevE.70.056110.CrossRefGoogle Scholar
  12. Ginsparg, P. (2009). The global village pioneers. Learned Publishing, 22(2), 95–100. doi:10.1087/2009203, http://physicsworld.com/cws/article/print/35983.Google Scholar
  13. Glänzel, W. (2002). Coauthorship patterns and trends in the sciences (1980–1998): A bibliometric study with implications for database indexing and search strategies. Library Trends, 50(3), 461–473.Google Scholar
  14. Glänzel, W., & Schubert, A. (2005). Analysing scientific networks through co-authorship. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of Quantitative Science and Technology Research (pp. 257–276). Netherlands: Springer. doi:10.1007/1-4020-2755-9_12.CrossRefGoogle Scholar
  15. Goyal, S., van der Leij, M. J., & Moraga-Gonzalez, J. L. (2006). Economics: An emerging small world. Journal of Political Economy, 114(2), 403–432. http://EconPapers.repec.org/RePEc:ucp:jpolec:v:114:y:2006:i:2:p:403-432 Google Scholar
  16. Grindrod, P., & Higham, D. J. (2013). A matrix iteration for dynamic network summaries. SIAM Review, 55(1), 118–128. doi:10.1137/110855715.CrossRefMATHMathSciNetGoogle Scholar
  17. Grossman, J. W. (2002). The evolution of the mathematical research collaboration graph. Congressus Numerantium, 158, 201–212.Google Scholar
  18. Grossman, J. W., & Ion, P. D. F. (1995). On a portion of the well-known collaboration graph. In Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Boca Raton, FL (Vol. 108, pp. 129–131).Google Scholar
  19. Guillaume, J. L., & Latapy, M. (2004). Bipartite structure of all complex networks. Information Processing Letters, 90(5), 215–221. doi:10.1016/j.ipl.2004.03.007.CrossRefMATHMathSciNetGoogle Scholar
  20. Holme, P., & Saramäki, J. (2011). Temporal networks. Physics Reports, 519(3), 97–125. doi:10.1016/j.physrep.2012.03.001.CrossRefGoogle Scholar
  21. Jackson, A. (1997). Chinese acrobatics, an old-time brewery, and the “much needed gap”: The life of Mathematical reviews. Notices of the American Mathematical Society, 44(3), 330–337. http://www.ams.org/notices/199703/comm-mr.pdf.
  22. Khodadadi, A., & Asgharian, M. (2008). Change-point problems and regression: an annotated bibliography. Collection of Biostatistics Research Archive. http://biostats.bepress.com/cobra/ps/art44.
  23. Larsen, P. O., & von Ins, M. (2010). The rate of growth in scientific publication and the decline in coverage provided by science citation index. Scientometrics, 84 (3), 575–603. doi:10.1007/s11192-010-0202-z, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909426/.
  24. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks.Physical Review Letters, 87, 198,701. doi:10.1103/PhysRevLett.87.198701.CrossRefGoogle Scholar
  25. Maslov, S., & Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science, 296(5569), 910–913. doi:10.1126/science.1065103.CrossRefGoogle Scholar
  26. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. The Annual Review of Sociology, 27, 415–444. http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.soc.27.1.415.
  27. Molloy, M., & Reed, B. (1995). A critical point for random graphs with a given degree sequence. In Proceedings of the Sixth International Seminar on Random Graphs and Probabilistic Methods in Combinatorics and Computer Science, “Random Graphs ’93” (Poznań, 1993) (Vol. 6, pp. 161–179). doi:10.1002/rsa.3240060204.
  28. Molloy, M., & Reed, B. (1998). The size of the giant component of a random graph with a given degree sequence. Combinatorics, Probability and Computing, 7(3), 295–305. doi:10.1017/S0963548398003526.CrossRefMATHMathSciNetGoogle Scholar
  29. Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69(2), 213–238. doi:10.2307/3593085
  30. Morillo, F., Bordons, M., & Gómez, I. (2003). Interdisciplinarity in science: A tentative typology of disciplines and research areas. Journal of the American Society for Information Science and Technology, 54(13), 1237–1249. doi:10.1002/asi.10326.CrossRefGoogle Scholar
  31. Newman, M. E. J. (2001a). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64, 016131. doi:10.1103/PhysRevE.64.016131, http://pre.aps.org/abstract/PRE/v64/i1/e016131.
  32. Newman, M. E. J. (2001b). Evolution of the social network of scientific collaborations: II. Shortest paths, weighted networks, and centrality. Physical Review E, 64, 016132. doi:10.1103/PhysRevE.64.016132, http://pre.aps.org/abstract/PRE/v64/i1/e016132.
  33. Newman, M. E. J. (2001c). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the USA, 98(2), 404–409. doi:10.1073/pnas.021544898.
  34. Newman, M. E. J. (2003). Mixing patterns in networks. Physical Review E, 67(2), 026,126. doi:10.1103/PhysRevE.67.026126.
  35. Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the USA, 101(1), 5200–5205. doi:10.1073/pnas.0307545100.CrossRefGoogle Scholar
  36. Newman, M. E. J. (2004). Who is the best connected scientist? A study of scientific coauthorship networks. In Complex networks, Lecture Notes in Physics (Vol. 650, pp. 337–370). Berlin: Springer.Google Scholar
  37. Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64, 026,118. doi:10.1103/PhysRevE.64.026118.CrossRefGoogle Scholar
  38. Opsahl, T. (2011). Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Social Network. doi:10.1016/j.socnet.2011.07.001.
  39. Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Network, 32(3), 245–251. doi:10.1016/j.socnet.2010.03.006.CrossRefGoogle Scholar
  40. Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115. http://www.jstor.org/stable/2333009.Google Scholar
  41. Perc, M. (2010). Growth and structure of Slovenia’s scientific collaboration network. Journal of Informetrics, 4(4), 475–482. doi:10.1016/j.joi.2010.04.003.CrossRefMathSciNetGoogle Scholar
  42. Persson, O., Glänzel, W., & Danell, R. (2004). Inflationary bibliometric values: The role of scientific collaboration and the need for relative indicators in evaluative studies, Katholieke Universiteit Leuven. http://ideas.repec.org/p/ner/leuven/urnhdl123456789-101421.html.
  43. Porter, A. L., Roessner, J. D., Cohen, A. S., & Perreault, M. (2006). Interdisciplinary research: Meaning, metrics and nurture. Reservoir Evaluation, 15(3), 187–195. http://ideas.repec.org/a/oup/rseval/v15y2006i3p187-195.html.
  44. Price, D. J. d. S. (1963). Little Science, Big Science... and Beyond. New York: Columbia University. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0231049560.
  45. Qin, J., Lancaster, F. W., & Allen, B. (1997). Types and levels of collaboration in interdisciplinary research in the Sciences. Journal of the American Society for Information Science, 48(10), 893–916. http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ564231.
  46. Soffer, S. N., & Vázquez, A. (2005). Network clustering coefficient without degree-correlation biases. Physical Review E, 71(5), 057,101. doi:10.1103/PhysRevE.71.057101.CrossRefGoogle Scholar
  47. Spencer, J. (2010). The giant component: the golden anniversary. Notices of the American Mathematical Society, 57(6), 720–724.MATHMathSciNetGoogle Scholar
  48. Tomassini, M., & Luthi, L. (2007). Empirical analysis of the evolution of a scientific collaboration network. Physica A 385(2), 750–764. doi:10.1016/j.physa.2007.07.028, http://www.sciencedirect.com/science/article/B6TVG-4P8GWXG-7/2/5836255114267d1a22b1d1fa47215fc9.Google Scholar
  49. Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., Rafols, I., & Börner, K. (2011). Approaches to understanding and measuring interdisciplinary scientific research (idr): a review of the literature. Journal of Informatrics 5(1), 14–26. doi:10.1016/j.joi.2010.06.004, http://www.sciencedirect.com/science/article/B83WV-51834VM-1/2/f35bf17a30a67b6b63b76ad36631e721.
  50. Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications (Vol. 8). Cambridge: Cambridge University Press. http://scholar.google.com/scholar.bib?q=info:gET6m8icitMJ:scholar.google.com/&output=citation&hl=en&as_sdt=0,5&as_vis=1&ct=citation&cd=0.
  51. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442. http://www.ncbi.nlm.nih.gov/pubmed/9623998.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Jason Cory Brunson
    • 1
  • Steve Fassino
    • 2
  • Antonio McInnes
    • 3
  • Monisha Narayan
    • 4
  • Brianna Richardson
    • 3
  • Christopher Franck
    • 5
  • Patrick Ion
    • 6
  • Reinhard Laubenbacher
    • 7
  1. 1.Virginia Bioinformatics InstituteBlacksburgUSA
  2. 2.Department of MathematicsUniversity of TennesseeKnoxvilleUSA
  3. 3.Department of Mathematics and Computer ScienceOakwood UniversityHuntsvilleUSA
  4. 4.Lyman Briggs CollegeMichigan State UniversityEast LansingUSA
  5. 5.Laboratory for Interdisciplinary Statistical AnalysisBlacksburgUSA
  6. 6.Mathematical ReviewsAnn ArborUSA
  7. 7.Center for Quantitative MedicineUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations