Scientometrics

, Volume 98, Issue 2, pp 1505–1520 | Cite as

Atapuerca: evolution of scientific collaboration in an emergent large-scale research infrastructure

  • Sergi Lozano
  • Xosé-Pedro Rodríguez
  • Alex Arenas
Article

Abstract

We study the evolution of scientific collaboration at Atapuerca’s archaeological complex along its emergence as a large-scale research infrastructure (LSRI). Using bibliometric and fieldwork data, we build and analyze co-authorship networks corresponding to the period 1992–2011. The analysis of such structures reveals a stable core of scholars with a long experience in Atapuerca’s fieldwork, which would control coauthorship-related information flows, and a tree-like periphery mostly populated by ‘external’ researchers. Interestingly, this scenario corresponds to the idea of a Equipo de Investigación de Atapuerca, originally envisioned by Atapuerca’s first director 30 years ago. These results have important systemic implications, both in terms of resilience of co-authorship structures and of ‘oriented’ or ‘guided’ self-organized network growth. Taking into account the scientific relevance of LSRIs, we expect a growing number of quantitative studies addressing collaboration among scholars in this sort of facilities in general and, particularly, emergent phenomena like the Atapuerca case.

Keywords

Emergent large-scale research infrastructures Scientific collaboration dynamics Co-authorship Network analysis Atapuerca 

References

  1. Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403–412.CrossRefGoogle Scholar
  2. Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Review of Modern Physics, 74, 47–97.CrossRefMATHGoogle Scholar
  3. Arsuaga, J. L., Lorenzo, C., Carretero, J. M., Gracia, A., Martínez, I., García, N., de Castro, J. M. B., et al. (1999). A complete human pelvis from the Middle Pleistocene of Spain. Nature, 399(6733), 255–258.CrossRefGoogle Scholar
  4. Arsuaga, J. L., Martinez, I., Gracia, A., Carretero, J. M., & Carbonell, E. (1993). Three new human skulls from the sima de los huesos middle pleistocene site in sierra de atapuerca, Spain. Nature, 362(6420), 534–537.CrossRefGoogle Scholar
  5. Barabási, A., Jeong, H., Nda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(34), 590–614.CrossRefMATHMathSciNetGoogle Scholar
  6. de Beaver, D., & Rosen, R. (1978). Studies in scientific collaboration. Scientometrics, 1(1), 65–84.CrossRefGoogle Scholar
  7. de Beaver, D., & Rosen, R. (1979). Studies in scientific collaboration—Part ii. Scientific co-authorship, research productivity and visibility in the French scientific elite, 1799–1830. Scientometrics, 1(2), 133–149.CrossRefGoogle Scholar
  8. Börner, K., Dall’Asta, L., Ke, W., & Vespignani, A. (2005). Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams. Complexity, 10(4), 57–67.CrossRefGoogle Scholar
  9. Burt, R. S. (2004). Structural holes and good ideas1. American Journal of Sociology, 110(2), 349–399.CrossRefGoogle Scholar
  10. Carbonell, E., Cáceres, I., Lozano, M., Saladié, P., Rosell, J., Lorenzo, C., Vallverdú, J., et al. (2010). Cultural cannibalism as a paleoeconomic system in the European Lower Pleistocene. Current Anthropology, 51(4), 539–549.CrossRefGoogle Scholar
  11. Carbonell, E., de Castro, J. B., Arsuaga, J., Diez, J., Rosas, A., Cuenca-Bescos, G., et al. (1995). Lower Pleistocene hominids and artifacts from Atapuerca-TD6 (Spain). Science, 269(5225), 826–830.CrossRefGoogle Scholar
  12. Carbonell, E., de Castro, J. M. B., Parés, J. M., Pérez-González, A., Cuenca-Bescós, G., Ollé, A., et al. (2008). The first hominin of Europe. Nature, 452(7186), 465–469.CrossRefGoogle Scholar
  13. Chin, G. Jr., Myers, J., & Hoyt, D. (2002). Social networks in the virtual science laboratory. Communications of the ACM, 45(8), 87–92.CrossRefGoogle Scholar
  14. Coleman, J. (1990). Foundations of social theory. Cambridge, MA: Harvard University Press.Google Scholar
  15. Crane, D. (1972). Invisible colleges: Diffusion of knowledge in scientific communities. Chicago: University of Chicago Press.Google Scholar
  16. de Castro, J. M. B., Arsuaga, J. L., Carbonell, E., Rosas, A., Martínez, I., & Mosquera, M. (1997). A hominid from the Lower Pleistocene of Atapuerca, Spain: Possible ancestor to neandertals and modern humans. Science, 276(5317), 1392–1395.CrossRefGoogle Scholar
  17. de Price, D. J. S. (1986). Little science, big science... and beyond. New York: Columbia University Press.Google Scholar
  18. Ding, Y. (2011). Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. Journal of Informetrics, 5(1), 187–203.CrossRefGoogle Scholar
  19. European Commission, et al. (2010). A vision for strengthening world-class research infrastructures in the ERA. Report of the expert group on research infrastructures. Brussels: European Commission.Google Scholar
  20. Fernández-Jalvo, Y., Díez, J. C., de Castro, J. M. B., Carbonell, E., & Arsuaga, J. L. (1996). Evidence of early cannibalism. Science, 271, 277–278.CrossRefGoogle Scholar
  21. Franceschet, M., & Costantini, A. (2010). The effect of scholar collaboration on impact and quality of academic papers. Journal of Informetrics, 4(4), 540–553.CrossRefGoogle Scholar
  22. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41.CrossRefGoogle Scholar
  23. Frenken, K., Hardeman, S., & Hoekman, J. (2009). Spatial scientometrics: Towards a cumulative research program. Journal of Informetrics, 3(3), 222–232.CrossRefGoogle Scholar
  24. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Science of the USA, 99(12), 7821–7826.CrossRefMATHMathSciNetGoogle Scholar
  25. Glänzel, W. (2001). National characteristics in international scientific co-authorship relations. Scientometrics, 51(1), 69–115.CrossRefGoogle Scholar
  26. Glänzel, W., & Schubert, A. (2005a). Analysing scientific networks through co-authorship. In Handbook of quantitative science and technology research (pp. 257–276). Dordrecht (NL): Kluwer Academic Publishers.Google Scholar
  27. Glänzel, W., & Schubert, A. (2005b). Domesticity and internationality in co-authorship, references and citations. Scientometrics, 65(3), 323–342.CrossRefGoogle Scholar
  28. Hagstrom, W. O. (1975). The scientific community (Vol. 130). New York: Basic Books.Google Scholar
  29. Hara, N., Solomon, P., Kim, S. L., & Sonnenwald, D. H. (2003). An emerging view of scientific collaboration: Scientists’ perspectives on collaboration and factors that impact collaboration. Journal of the American Society for Information Science and Technology, 54(10), 952–965.CrossRefGoogle Scholar
  30. Havemann, F., Wagner-Döbler, R., & Kretschmer, H. (2001). In Proceedings of the Second Berlin Workshop on Scientometrics and Informetrics, Collaboration in Science and in Technology.Google Scholar
  31. He, B., Ding, Y., Tang, J., Reguramalingam, V., & Bollen, J. (2013). Mining diversity subgraph in multidisciplinary scientific collaboration networks: A meso perspective. Journal of Informetrics, 7(1), 117–128.CrossRefGoogle Scholar
  32. Hennemann, S., Rybski, D., & Liefner, I. (2012). The myth of global science collaboration—Collaboration patterns in epistemic communities. Journal of Informetrics, 6(2), 217–225.CrossRefGoogle Scholar
  33. Hochadel, O. (2013a). A boom of bones and books: The popularization industry of Atapuerca and human-origins research in contemporary Spain. Public Understanding of Science, 22(5), 530–537.Google Scholar
  34. Hochadel, O. (2013b). El Mito de Atapuerca: Orígenes, Ciencia, Divulgación. Barcelona: Edicions UAB.Google Scholar
  35. Hou, H., Kretschmer, H., & Liu, Z. (2008). The structure of scientific collaboration networks in scientometrics. Scientometrics, 75(2), 189–202.CrossRefGoogle Scholar
  36. Jones, B. F., Wuchty, S., & Uzzi, B. (2008). Multi-university research teams: Shifting impact, geography, and stratification in science. Science, 322(5905), 1259–1262.CrossRefGoogle Scholar
  37. Katz, J. (1994). Geographical proximity and scientific collaboration. Scientometrics, 31(1), 31–43.CrossRefGoogle Scholar
  38. Katz, J., & Martin, B. R. (1997). What is research collaboration?. Research Policy, 26(1), 1–18.CrossRefGoogle Scholar
  39. Kraut, R., Egido, C., & Galegher, J. (1988). Patterns of contact and communication in scientific research collaboration. In Proceedings of the 1988 ACM Conference on Computer-Supported Cooperative Work, CSCW ’88, CSCW 88 (pp. 1–12).Google Scholar
  40. Kretschmer, H. (2004). Author productivity and geodesic distance in bibliographic co-authorship networks, and visibility on the web. Scientometrics, 60(3), 409–420.CrossRefGoogle Scholar
  41. Liu, X., Bollen, J., Nelson, M. L., & de Sompel, H. V. (2005). Co-authorship networks in the digital library research community. Information Processing and Management, 41(6), 1462–1480.CrossRefGoogle Scholar
  42. Mali, F., Kronegger, L., Doreian, P., & Ferligoj, A. (2012). Dynamic scientific co-authorship networks. In A. Scharnhorst, K. Brner, & P. Besselaar (Eds.), Models of science dynamics, understanding complex systems (pp. 195–232). Berlin: Springer.Google Scholar
  43. Melin, G., & Persson, O. (1996). Studying research collaboration using co-authorships. Scientometrics, 36(3), 363–377.CrossRefGoogle Scholar
  44. Newman, M. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.CrossRefMATHMathSciNetGoogle Scholar
  45. Newman, M. (2010). Networks: An introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  46. OECD. (2010). Establishing large international research infrastructures: Issues and options. Report of the Global Science Forum.Google Scholar
  47. Perc, M. (2010). Growth and structure of Slovenias scientific collaboration network. Journal of Informetrics, 4(4), 475–482.CrossRefMathSciNetGoogle Scholar
  48. Ponds, R., Van Oort, F., & Frenken, K. (2007). The geographical and institutional proximity of research collaboration. Papers in Regional Science, 86(3), 423–443.CrossRefGoogle Scholar
  49. Viana, M. P., Amancio, D. R., & da F Costa, L. (2013). On time-varying collaboration networks. Journal of Informetrics, 7(2), 371–378.CrossRefGoogle Scholar
  50. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (structural analysis in the social sciences) Author: Stanley Wasserman. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  51. Wray, K. B. (2002). The epistemic significance of collaborative research. Philosophy of Science, 69(1), 150–168.CrossRefGoogle Scholar
  52. Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.CrossRefGoogle Scholar
  53. Zuccala, A. (2006). Modeling the invisible college. Journal of the American Society for Information Science and Technology, 57(2), 152–168.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Sergi Lozano
    • 1
    • 2
  • Xosé-Pedro Rodríguez
    • 1
    • 2
  • Alex Arenas
    • 1
    • 3
    • 4
  1. 1.IPHES, Institut Catala de Paleoecologia Humana i Evolució SocialTarragonaSpain
  2. 2.Area de PrehistoriaUniversitat Rovira i Virgili (URV)TarragonaSpain
  3. 3.Departament dEnginyeria Informatica i MatematiquesUniversitat Rovira i VirgiliTarragonaSpain
  4. 4.Institute for Biocomputation and Physics of Complex Systems (BIFI)University of ZaragozaSaragossaSpain

Personalised recommendations