Advertisement

Scientometrics

, Volume 98, Issue 2, pp 807–821 | Cite as

Reception of integrative and complementary medicine (ICM) in scientific journals: a citation and co-word analysis

  • Jenny-Ann Brodin Danell
Article

Abstract

Even if integrative and complementary medicine (ICM) is a growing scientific field, it is also a highly contested area in terms of scientific legitimacy. The aim of this article is to analyze the reception of ICM research in scientific journals. Is this kind of research acknowledged outside the ICM context, for example, in general or specialized medicine? What is the impact of ICM research? and Is it possible to identify any shift in content, from the original ICM research to the documents where it is acknowledged? The material consisted of two sets: documents published in 12 ICM journals in 2007; and all documents citing these documents during the years 2007–2012. These sets were analyzed with help from citation and co-word analysis. When analyzing the citation pattern, it was clear that a majority of the cited documents were acknowledged in journals and documents that could be related to research areas outside the ICM context, such as pharmacology & pharmacy and plant science—even if the most frequent singular journals and subject categories were connected to ICM. However, after analyzing the content of cited and citing documents, it was striking how similar the content was. It was also evident that much of this research was related to basic preclinical research, in fields such as cell biology, plant pharmacology, and animal experiments.

Keywords

Integrative medicine Complementary medicine Science studies Co-word analysis Citation analysis 

References

  1. Adams, V. (2002). Randomized controlled crime: Postcolonial sciences in alternative medicine research. Social Studies of Science, 32(5–6), 659–690. doi: 10.1177/030631270203200503.
  2. Barnes, J., Abbot, N. C., Harkness, E. F., & Ernst, E. (1999). Articles on complementary medicine in the mainstream medical literature - An investigation of MEDLINE, 1966 through 1996. Archives of Internal Medicine, 159(15), 1721–1725. doi: 10.1001/Archinte.159.15.1721.CrossRefGoogle Scholar
  3. Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics-Theory and Experiment,. doi: 10.1088/1742-5468/2008/10/P10008.Google Scholar
  4. Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research—The case of polymer chemistry. Scientometrics, 22(1), 155–205. doi: 10.1007/Bf02019280.CrossRefGoogle Scholar
  5. Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks—An introduction to co-word analysis. Social Science Information Sur Les Sciences Sociales, 22(2), 191–235. doi: 10.1177/053901883022002003.CrossRefGoogle Scholar
  6. Chiu, W. T., & Ho, Y. S. (2005). Bibliometric analysis of homeopathy research during the period of 1991 to 2003. Scientometrics, 63(1), 3–23. doi: 10.1007/S11192-005-0201-7.CrossRefGoogle Scholar
  7. Courtial, J. P., & Law, J. (1989). A co-word study of artificial-intelligence. Social Studies of Science, 19(2), 301–311. doi: 10.1177/030631289019002005.CrossRefGoogle Scholar
  8. Danell, J. A. B. (2012). Representation and negotiation of complementary and alternative medicine: A citation context analysis. Science Communication, 34(3), 299–333. doi: 10.1177/1075547011413140.CrossRefGoogle Scholar
  9. Danell, J. A. B., & Danell, R. (2009). Publication activity in complementary and alternative medicine. Scientometrics, 80(2), 539–551. doi: 10.1007/s11192-008-2078-8.CrossRefGoogle Scholar
  10. Danell, J. A. B., & Danell, R. (2011). Development of scientific publications on acupuncture. In M. Saad (Ed.), Acupuncture—Concepts and physiology (pp. 207–222). Rijeka: Intech.Google Scholar
  11. Ernst, E. (2007). Evaluation of complementary/alternative medicine. Zeitschrift fur arztliche Fortbildung und Qualitatssicherung, 101(5), 313–315.MathSciNetGoogle Scholar
  12. Fu, J.-Y., Zhang, X., Zhao, Y. H., Huang, M. H., & Chen, D. Z. (2011). Bibliometric analysis of complementary and alternative medicine research over three decades. Scientometrics, 88(2), 617–626. doi: 10.1007/S11192-011-0391-0.CrossRefGoogle Scholar
  13. Fu, J.-Y., Zhang, X., Zhao, Y.-H., Tong, H.-F., Chen, D.-Z., & Huang, M.-H. (2012). Scientific production and citation impact: A bibliometric analysis in acupuncture over three decades. Scientometrics, 93(3), 1061–1079.CrossRefGoogle Scholar
  14. Garfield, E. (1965). Can citation indexing be automated. In M. E. Stevens, V. E. Giuliano & L. E. Heilprin (Eds.), Statistical Association Methods for mechanized documentation, symposium proceedings Washington 1964 (pp. 189–192). Washington, DC.Google Scholar
  15. Gieryn, T. F. (1983). Boundary-work and the demarcation of science from non-science—Strains and interests in professional ideologies of scientists. American Sociological Review, (6), 781–795.Google Scholar
  16. Glanzel, W., & Moed, H. F. (2002). Journal impact measures: Their role in research policy and scientific information management—Selected papers of the special day session at the 8th international conference on Scientometrics and Informetrics, held in Sydney, Australia on July 17, 2001, Preface. Scientometrics, 53(2), 169–170.Google Scholar
  17. Han, J. S., & Ho, Y. S. (2011). Global trends and performances of acupuncture research. Neuroscience and Biobehavioral Reviews, 35(3), 680–687. doi: 10.1016/J.Neubiorev.2010.08.006.CrossRefGoogle Scholar
  18. Hargens, L. L. (2000). Using the literature: Reference networks, reference contexts, and the social structure of scholarship. American Sociological Review, 65(6), 846–865.CrossRefGoogle Scholar
  19. He, Q. (1999). Knowledge discovery through co-word analysis. Library Trends, 48(1), 133–159.Google Scholar
  20. Hess, D. J. (1993). Science in the new age—The Paranormal, its defenders and debunkers, and American culture. Madison: The University of Wisconsin Press.Google Scholar
  21. Ingwersen, P., Larsen, B., Rousseau, R., & Russell, J. (2001). The publication-citation matrix and its derived quantities. Chinese Science Bulletin, 46(6), 524–528.CrossRefGoogle Scholar
  22. Kim, J. (2007). Alternative medicine’s encounter with laboratory science: The scientific construction of Korean medicine in a global age. Social Studies of Science, 37(6), 855–880. doi: 10.1177/0306312707076600.
  23. Latour, B., & Woolgar, S. (1979). Laboratory life: The social construction of scientific facts (Sage library of social research, v. 80). Beverly Hills: Sage Publications.Google Scholar
  24. Law, J., & Whittaker, J. (1992). Mapping acidification research—A test of the co-word method. Scientometrics, 23(3), 417–461. doi: 10.1007/Bf02029807.CrossRefGoogle Scholar
  25. Leydesdorff, L. (1989). Words and co-words as indicators of intellectual organization. Research Policy, 18(4), 209–223. doi: 10.1016/0048-7333(89)90016-4.CrossRefGoogle Scholar
  26. MacRoberts, M. H., & MacRoberts, B. R. (1996). Problems of citation analysis. Scientometrics, 36(3), 435–444.CrossRefGoogle Scholar
  27. Martin, S. C. (1994). The only truly scientific method of healing, chiropractic and American science, 1895–1990. Isis, 85, 207–227.CrossRefGoogle Scholar
  28. Pittler, M. H., Abbot, N. C., Harkness, E. F., & Ernst, E. (2000). Location bias in controlled clinical trials of complementary/alternative therapies. Journal of Clinical Epidemiology, 53(5), 485–489.CrossRefGoogle Scholar
  29. Smith, L. C. (1981). Citation analysis. Library Trends, 30(1), 83–106.Google Scholar
  30. Sood, A., Knudsen, K., Sood, R., Wahner-Roedler, D. L., Barnes, S. A., Bardia, A., et al. (2007). Publication bias for CAM trials in the highest impact factor medicine journals is partly due to geographical bias. Journal of Clinical Epidemiology, 60(11), 1123–1126. doi: 10.1016/j.jclinepi.2007.01.009.CrossRefGoogle Scholar
  31. Tam, W. W. S., Wong, E. L. Y., Wong, F. C. Y., & Cheung, A. W. L. (2012). Citation classics in the integrative and complementary medicine literature: 50 frequently cited articles. European Journal of Integrative Medicine, 4(1), E77–E83. doi: 10.1016/J.Eujim.2011.12.004.CrossRefGoogle Scholar
  32. Ulett, G. A. (1999). Acupuncture and amitriptyline for HIV-related peripheral neuropathic pain. Jama-Journal of the American Medical Association, 281(14), 1270–1271.CrossRefGoogle Scholar
  33. Van Eck, N. J., & Waltman, L. (2007). VOS: A new method for visualizing similarities between objects. Advances in Data Analysis, 299–306.Google Scholar
  34. Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. ISSI Newsletter, 7(3), 50–54.Google Scholar
  35. Vickers, A., Goyal, N., Harland, R., & Rees, R. (1998). Do certain countries produce only positive results? A systematic review of controlled trials. Controlled Clinical Trials, 19(2), 159–166.CrossRefGoogle Scholar
  36. Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635. doi: 10.1016/J.Joi.2010.07.002.CrossRefGoogle Scholar
  37. Wouters, P. (1999). The Citation Culture. Amsterdam: University of Amsterdam, Faculteit der Scheikunde.Google Scholar
  38. Yoshida, M. (2002). A theoretical model of biomedical professionals’ legitimization of alternative therapies. Complementary Health Practice Review, 7(3), 187–208. doi: 10.1177/153321010200700303.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Department of SociologyUmeå UniversityUmeåSweden

Personalised recommendations