, Volume 99, Issue 1, pp 27–35 | Cite as

A routine for measuring synergy in university–industry–government relations: mutual information as a Triple-Helix and Quadruple-Helix indicator

  • Loet Leydesdorff
  • Han Woo Park
  • Balazs Lengyel


Mutual information in three (or more) dimensions can be considered as a Triple-Helix indicator of possible synergy in university–industry–government relations. An open-source routine th4.exe makes the computation of this indicator interactively available at the internet, and thus applicable to large sets of data. Th4.exe computes all probabilistic entropies and mutual information in two, three, and, if available in the data, four dimensions among, for example, classes such as geographical addresses (cities, regions), technological codes (e.g. OECD’s NACE codes), and size categories; or, alternatively, among institutional addresses (academic, industrial, public sector) in document sets. The relations between the Triple-Helix indicator—as an indicator of synergy—and the Triple-Helix model that specifies the possibility of feedback by an overlay of communications, are also discussed.


Indicator Triple Helix Quadruple Helix Software Information theory Mutual information Mutual redundancy 



We thank Øivind Strand for providing data about Tromso. We acknowledge support from the SSK (Social Science Korea) Program funded by the National Research Foundation of South Korea; NRF-2010-330-B00232; Balázs Lengyel acknowledges support from the Hungarian Scientific Research Fund (PD106290).


  1. Abramson, N. (1963). Information theory and coding. New York: McGraw-Hill.Google Scholar
  2. Biggiero, L. (1998). Italian industrial districts: A Triple Helix pattern of problem solving. Industry and Higher Eductation, 12(4), 227–234.Google Scholar
  3. Bunders, J. F. G., Broerse, J. E. W., & Zweekhorst, M. B. M. (1999). The Triple Helix enriched with the user perspective: A view from Bangladesh. The Journal of Technology Transfer, 24(2), 235–246.CrossRefGoogle Scholar
  4. Carayannis, E. G., & Campbell, D. F. J. (2009). ‘Mode 3’ and ‘Quadruple Helix’: toward a 21st century fractal innovation ecosystem. International Journal of Technology Management, 46(3), 201–234.CrossRefGoogle Scholar
  5. Carayannis, E. G., & Campbell, D. F. J. (2010). Triple Helix, Quadruple Helix and Quintuple Helix and how do knowledge, innovation, and environment relate to each other? International Journal of Social Ecology and Sustainable Development, 1(1), 41–69.CrossRefGoogle Scholar
  6. Carlsson, B. (2006). Internationalization of innovation systems: A survey of the literature. Research Policy, 35(1), 56–67.Google Scholar
  7. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.CrossRefGoogle Scholar
  8. Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–153.CrossRefGoogle Scholar
  9. Etzkowitz, H., & Leydesdorff, L. (1995). The Triple Helix—university–industry–government relations: A laboratory for knowledge-based economic development. EASST Review, 14, 14–19.Google Scholar
  10. Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From national systems and ‘Mode 2’ to a Triple Helix of university–industry–government relations. Research Policy, 29(2), 109–123.CrossRefGoogle Scholar
  11. Freeman, C., & Perez, C. (1988). Structural crises of adjustment, business cycles and investment behaviour. In G. Dosi, C. Freeman, R. Nelson, G. Silverberg, & L. Soete (Eds.), Technical change and economic theory (pp. 38–66). London: Pinter.Google Scholar
  12. Hodgson, G., & Knudsen, T. (2011). Darwin’s conjecture: The search for general principles of social and economic evolution. Chicago/London: University of Chicago Press.Google Scholar
  13. Ivanova, I. A., & Leydesdorff, L. (2012). Rotational symmetry and the transformation of innovation systems in a Triple Helix of university–industry–government relations; available at
  14. Krippendorff, K. (1980). Q; an interpretation of the information theoretical Q-measures. In R. Trappl, G. J. Klir, & F. Pichler (Eds.), Progress in cybernetics and systems research (Vol. VIII, pp. 63–67). New York: Hemisphere.Google Scholar
  15. Krippendorff, K. (2009a). W. Ross Ashby’s information theory: A bit of history, some solutions to problems, and what we face today. International Journal of General Systems, 38(2), 189–212.CrossRefzbMATHMathSciNetGoogle Scholar
  16. Krippendorff, K. (2009b). Information of interactions in complex systems. International Journal of General Systems, 38(6), 669–680.CrossRefzbMATHMathSciNetGoogle Scholar
  17. Kwon, K. S., Park, H. W., So, M., & Leydesdorff, L. (2012). Has globalization strengthened South Korea’s national research system? National and international dynamics of the Triple Helix of scientific co-authorship relationships in South Korea. Scientometrics, 90(1), 163–175. doi: 10.1007/s11192-011-0512-9.CrossRefGoogle Scholar
  18. Lengyel, B., & Leydesdorff, L. (2011). Regional innovation systems in Hungary: The failing synergy at the national level. Regional Studies, 45(5), 677–693. doi: 10.1080/00343401003614274.CrossRefGoogle Scholar
  19. Leydesdorff, L. (1992). Knowledge representations, bayesian inferences, and empirical science studies. Social Science Information, 31(2), 213–237.CrossRefGoogle Scholar
  20. Leydesdorff, L. (1995). The challenge of scientometrics: The development, measurement, and self-organization of scientific communications. Leiden: DSWO Press, Leiden University.Google Scholar
  21. Leydesdorff, L. (2003). The mutual information of university–industry–government relations: An indicator of the Triple Helix dynamics. Scientometrics, 58(2), 445–467.CrossRefGoogle Scholar
  22. Leydesdorff, L. (2010). Redundancy in systems which entertain a model of themselves: Interaction information and the self-organization of anticipation. Entropy, 12(1), 63–79. doi: 10.3390/e12010063.CrossRefGoogle Scholar
  23. Leydesdorff, L. (2011). “Structuration” by intellectual organization: The configuration of knowledge in relations among scientific texts. Scientometrics, 88(2), 499–520.CrossRefGoogle Scholar
  24. Leydesdorff, L. (2012a). The Triple Helix, Quadruple Helix,…, and an N-tuple of helices: Explanatory models for analyzing the knowledge-based economy? Journal of the Knowledge Economy, 3(1), 25–35. doi: 10.1007/s13132-13011-10049-13134.CrossRefGoogle Scholar
  25. Leydesdorff, L. (2012b). Statistics for the dynamic analysis of scientometric data: The evolution of the sciences in terms of trajectories and regimes. Scientometrics,. doi: 10.1007/s11192-012-0917-0.Google Scholar
  26. Leydesdorff, L., Dolfsma, W., & Van der Panne, G. (2006). Measuring the knowledge base of an economy in terms of Triple-Helix relations among ‘Technology, Organization, and Territory’. Research Policy, 35(2), 181–199.CrossRefGoogle Scholar
  27. Leydesdorff, L., & Etzkowitz, H. (2003). Can “The Public” be considered as a fourth Helix in university–industry–government relations? Report of the fourth Triple Helix conference. Science and Public Policy, 30(1), 55–61.CrossRefGoogle Scholar
  28. Leydesdorff, L., & Fritsch, M. (2006). Measuring the knowledge base of regional innovation systems in Germany in terms of a Triple Helix dynamics. Research Policy, 35(10), 1538–1553.CrossRefGoogle Scholar
  29. Leydesdorff, L., & Ivanova, I. A. (2013). Mutual redundancies in inter-human communication systems: Steps towards a calculus of processing meaning. Journal of the American Society for Information Science and Technology; available at
  30. Leydesdorff, L., Rotolo, D., & de Nooy, W. (2012). Innovation as a nonlinear process, the scientometric perspective, and the specification of an “Innovation Opportunities Explorer”. Technology Analysis and Strategic Management; available at
  31. Leydesdorff, L., & Strand, Ø. (2012). The Swedish system of innovation: Regional synergies in a knowledge-based economy. Journal of the American Society for Information Science and Technology, 62(11), 2133–2146.CrossRefGoogle Scholar
  32. Leydesdorff, L., & Sun, Y. (2009). National and international dimensions of the Triple Helix in Japan: University–industry–government versus international co-authorship relations. Journal of the American Society for Information Science and Technology, 60(4), 778–788.CrossRefGoogle Scholar
  33. Luhmann, N. (1984). Soziale systeme. Grundriß einer allgemeinen theorie. Frankfurt: Suhrkamp.Google Scholar
  34. Luhmann, N. (1995). Social systems. Stanford, CA: Stanford University Press.Google Scholar
  35. McGill, W. J. (1954). Multivariate information transmission. Psychometrika, 19(2), 97–116.CrossRefzbMATHGoogle Scholar
  36. Park, H. W. (2010). Mapping the e-science landscape in South Korea using the webometrics method. Journal of Computer-Mediated Communication, 15(2), 211–229.CrossRefGoogle Scholar
  37. Park, H. W., Hong, H. D., & Leydesdorff, L. (2005). A comparison of the knowledge-based innovation systems in the economies of South Korea and The Netherlands using Triple Helix indicators. Scientometrics, 65(1), 3–27.CrossRefGoogle Scholar
  38. Park, H. W., & Leydesdorff, L. (2010). Longitudinal trends in networks of university–industry–government relations in South Korea: The role of programmatic incentives. Research Policy, 39(5), 640–649.CrossRefGoogle Scholar
  39. Perevodchikov, E., Uvarov, A., & Leydesdorff, L. (2013). Measuring synergy in the Russian innovation system. Paper presented at the 12th international conference about the triple helix of university-industry-government relations, London, UK.Google Scholar
  40. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423 and 623–656.Google Scholar
  41. Sheskin, D. J. (2011). Handbook of parametric and nonparametric statistical procedures (5th ed.). Boca Raton, FL: Chapman and Hall/CRC.zbMATHGoogle Scholar
  42. Strand, Ø., & Leydesdorff, L. (2013). Where is synergy in the Norwegian innovation system indicated? Triple Helix relations among technology, organization, and geography. Technological Forecasting and Social Change, 80(3), 471–484.CrossRefGoogle Scholar
  43. Theil, H. (1972). Statistical decomposition analysis. Amsterdam/London: North-Holland.zbMATHGoogle Scholar
  44. Ulanowicz, R. E. (1986). Growth and development: Ecosystems phenomenology. San Jose: toExcel.CrossRefzbMATHGoogle Scholar
  45. Ulanowicz, R. E. (2009). A third window: Natural life beyond Newton and Darwin. West Conshohocken: Templeton Foundation Press.Google Scholar
  46. Vernon, R. (1979). The product cycle hypothesis in a new international environment. Oxford Bulletin of Economics and Statistics, 41(4), 255–267.CrossRefGoogle Scholar
  47. Ye, F. Y., Yu, S. S., & Leydesdorff, L. (2012). The Triple Helix of university–industry–government relations at the country level, and its dynamic evolution under the pressures of globalization; available at
  48. Yeung, R. W. (2008). Information theory and network coding. New York, NY: Springer.zbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Loet Leydesdorff
    • 1
  • Han Woo Park
    • 2
  • Balazs Lengyel
    • 3
  1. 1.Amsterdam School of Communication Research (ASCoR)University of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Media and CommunicationYeungNam UniversityGyeongsan-siSouth Korea
  3. 3.International Business School BudapestBudapestHungary

Personalised recommendations