Advertisement

Scientometrics

, Volume 98, Issue 2, pp 1203–1219 | Cite as

Global trend in aquatic ecosystem research from 1992 to 2011

  • Jingqiu Liao
  • Yi Huang
Article

Abstract

Aquatic ecosystems are ecologically important, but continuously threatened by a growing number of human induced changes. This study evaluates the research trends of “aquatic ecosystem” between 1992 and 2011 in journals of all subject categories of the science citation index and social sciences citation index. The analyzed parameters include publication output, cited publication, document type, language, distributions of journal, author, country and institutes, and analysis of author keywords and keywords plus. The results showed that over the past two decades, there was a consistent growth in publication output with involvement of increasing number of countries and institutions, and North America was still the leading region in the subject. Classification of the top 30 author keywords indicated that more research attentions were paid to the study on aquatic organism, water environment and aquatic ecosystem condition. Aquatic ecosystem, water quality, and fish were the top three most frequently used author keywords. In addition, owing to its significant impact on aquatic ecosystems, climate change has been placed crucial emphasis recently. Aquatic ecosystem research trend was shifting from water environment to aquatic ecosystem wide issues.

Keywords

Aquatic ecosystem Bibliometric analysis SCI & SSCI Research trend 

References

  1. Arnell, N., Bates, B., Lang, H., Magnuson, J. J., & Mulholland, P. (1996). Hydrology and freshwater ecology. In R. T. Watson, Watson, M. C. Zinyowera, & R. H. Moss (Eds.), Climate change 1995: impacts, adaptations and mitigation of climate change. contribution of working group II to the second assessment report of the intergovernmental panel on climate change (pp. 325–363). Cambridge: Cambridge University Press.Google Scholar
  2. Belpaire, C., Smolders, R., Auweele, I. V., Ercken, D., Breine, J., Thuyne, G. V., et al. (2000). An index of biotic integrity characterizing fish populations and the ecological quality of Flandrian water bodies. Hydrobiologia, 434, 17–33.CrossRefGoogle Scholar
  3. Biddanda, B. A., Coleman, D. F., Johengen, T. H., Ruberg, S. A., Meadows, G. A., Van Sumeren, H. W., et al. (2006). Exploration of a submerged sinkhole ecosystem in Lake Huron. Ecosystems, 9, 828–842.CrossRefGoogle Scholar
  4. Borgatti, S. P. (2002). NetDraw network visualization. USA: Analytic technologies.Google Scholar
  5. Bradford, S. C. (1934). Sources of information on specific subjects. British Journal of Engineering, 137, 85–86.Google Scholar
  6. Brian, M. W., Lisa, J. H., & Luis, M. M. (2002). Macroinvertebrate based index of biotic integrity for protection of streams in west-central Mexico. Journal of the North American Benthological Society, 21, 686–700.CrossRefGoogle Scholar
  7. Cao, X. F., Huang, Y., Wang, J., & Luan, S. J. (2012). Research status and trends in limnology journals: a bibliometric analysis based on SCI database. Scientometrics, 92, 735–746.CrossRefGoogle Scholar
  8. Carpenter, S. R., Caraco, N. F., & Correll, D. L. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.CrossRefGoogle Scholar
  9. Carpenter, S. R., Fisher, S. G., Grimm, N. B., & Kitchell, J. F. (1992). Global change and freshwater ecosystems. Annual Review of Ecological System, 23, 119–139.CrossRefGoogle Scholar
  10. Charles, E. H. (1982). Large lakes of the world. Journal of Great Lakes Research, 8, 379–412.CrossRefGoogle Scholar
  11. Chiu, W. T., & Ho, Y. S. (2007). Bibliometric analysis of tsunami research. Scientometrics, 73, 3–17.CrossRefGoogle Scholar
  12. Chuang, K. Y., Huang, Y. L., & Ho, Y. S. (2007). A bibliometric and citation analysis of stroke-related research in Taiwan. Scientometrics, 72, 201–212.CrossRefGoogle Scholar
  13. Eugene, G. (1990). KeyWords Plus: ISI’s breakthrough retrieval method. Part 1. Expanding your searching power on current contents on diskette. Current Comments, 32, 295–299.Google Scholar
  14. Eugene, A. S., & Oh, I. H. (2004). Aquatic ecosystem assessment using exergy. Ecological Indicators, 4, 189–198.CrossRefGoogle Scholar
  15. Gregerio, G. A., Rafael, A. B., Carolina, N. M., & Juan Carlos, V. Z. (2008). Coauthorship networks and institutional collaboration patterns in reproductive biology. Fertility Sterility, 90, 941–956.CrossRefGoogle Scholar
  16. Griffitth, M. B., Hill, B. H., & McCormick, F. H. (2005). Comparative application of indices of biotic integrity based on periphyton, macroinvertebrates, and fish to southern Rocky Mountain streams. Ecological Indicators, 5, 117–136.CrossRefGoogle Scholar
  17. Haeckel, E. (1866). Generelle morphologie der organismen. Berlin: Verlag von Georg Reimer.CrossRefGoogle Scholar
  18. Harris, J. H., & Silveira, R. (1999). Large-scale assessments of river health using an Index of Biotic Integrity with low-diversity fish communities. Freshwater Biology, 41, 235–252.CrossRefGoogle Scholar
  19. Ho, Y. S. (2007). Bibliometric analysis of adsorption technology in environmental science. Journal of Environmental Protection Science, 1, 1–11.Google Scholar
  20. Kong, H. M., Zhao, J. Z., Ji, L. Z., Lu, Z., Deng, H. B., Ma, K. M., et al. (2002). Assessment method of ecosystem health. Chinese Journal of Applied Ecology, 13, 486–490. (in Chinese).Google Scholar
  21. Kulasegarah, J., & Fenton, J. E. (2010). Comparison of the h-index with standard bibliometric indicators to rank influential otolaryngologists in Europe and North America. European Archives Otorhinolaryngology, 267, 455–458.CrossRefGoogle Scholar
  22. Li, L. L., Ding, G. H., Feng, N., Wang, M. H., & Ho, Y. S. (2009a). Global stem cell research trend: Bibliometric analysis as a tool for mapping of trends from 1991 to 2006. Scientometrics, 80, 39–58.CrossRefGoogle Scholar
  23. Li, J. F., Zhang, Y. H., Wang, X. S., & Ho, Y. S. (2009b). Bibliometric analysis of atmospheric simulation trends in meteorology and atmospheric science journals. Croatica Chemica Acta, 82, 695–705.Google Scholar
  24. Lunetta, R. S., Shao, Y., Ediriwickrema, J., & Lyon, J. G. (2010). Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS–NDVI data. International Journal of Applied Earth Observation and Geoinformation, 12, 81–88.CrossRefGoogle Scholar
  25. Ma, K. M., Kong, H. M., Guan, W. B., & Fu, B. J. (2001). Ecosystem health assessment: Methods and directions. Acta Ecologica Sinica, 21, 2107–2116. (in Chinese).Google Scholar
  26. Magnuson, J. J., Webster, K. E., Assel, R. A., Bowser, C. J., Dillon, P. J., Eaton, J. G., et al. (1997). Potential effects of climate changes on aquatic systems: Laurentian great lakes and precambrian shield region. Hydrological Processes, 11, 825–871.CrossRefGoogle Scholar
  27. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington, DC: Island Press.Google Scholar
  28. Naiman, R. J., Johnston, C. A., & Kelley, J. C. (1988). Alteration of North American streams by beaver. BioScience, 38, 753–762.CrossRefGoogle Scholar
  29. NASA. (2011). Global climate change, http://climate.nasa.gov/warming_world. Accessed 29 Jan 2013.
  30. Osca, L. J. (2005). Some considerations on the use of the impact factor of scientific journals as a tool to evaluate research in psychology. Scientometrics, 65, 189–197.CrossRefGoogle Scholar
  31. Reynolds, C. S. (2003). Planktic community assembly in flowing water and the ecosystem health of rivers. Ecological Modelling, 160, 191–203.CrossRefGoogle Scholar
  32. Rubec, C. D. A., & Hanson, A. R. (2009). Wetland mitigation and compensation: Canadian experience Wetlands. Ecological Management, 17, 3–14.Google Scholar
  33. Silvera, M. P., Baptista, D. F., Buss, D. F., Nessimian, J. L., & Egler, M. (2005). Application of biological measures for stream integrity assessment in south–east Brazil. Environmental Monitoring and Assessment, 101, 117–128.Google Scholar
  34. Smith, J. B. (1991). The potential impacts of climate change on the Great Lakes. Bulletin of the America Meteorological Society, 72, 21–28.CrossRefGoogle Scholar
  35. Stevenson, R. J., & Smol, J. P. (2003). Use of algae in environmental assessments. In J. D. Wehr & R. G. Sheath (Eds.), Freshwater algae of North America: Classification and ecology (pp. 775–804). San Diego: Academic Press.CrossRefGoogle Scholar
  36. Van Raan, A. F. J. (2005). For your citations only? Hot topics in bibliometric analysis Measurement. Interdisciplinary Research and Perspectives, 3, 50–62.CrossRefGoogle Scholar
  37. Xie, S. D., Zhang, J., & Ho, Y. S. (2008). Assessment of world aerosol research trends by bibliometric analysis. Scientometrics, 77, 113–130.CrossRefGoogle Scholar
  38. Yoon, I. B., Kong, D. S., & Ryu, J. K. (1992). Studies on the biological evaluation of water quality by benthic macroinvertibrates—saprobic valency and indicative value. Korean Journal of Environmental Biology, 10, 24–39.Google Scholar
  39. Zinyowera, M. C., & Moss, R. H. (Eds.). (1995). Climate change 1995: Impacts, adaptations and mitigation of climate change: Scientific ® -technical analyses, contribution of working group II to the second assessment report of the intergovernmental panel on climate change (p. 880). New York: Cambridge University Press.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.College of Environmental Sciences and EngineeringPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations