Advertisement

Scientometrics

, Volume 98, Issue 1, pp 577–582 | Cite as

On development of fractional calculus during the last fifty years

  • J. A. Tenreiro Machado
  • Alexandra M. S. F. Galhano
  • Juan J. Trujillo
Article

Abstract

Fractional calculus generalizes integer order derivatives and integrals. During the last half century a considerable progress took place in this scientific area. This paper addresses the evolution and establishes an assertive measure of the research development.

Keywords

Fractional calculus Scientific evolution Science metrics 

Notes

Acknowledgements

This work was supported, in part, by Government of Spain and FEDER Grant No. MTM2010-16499.

References

  1. Arbesman, S. (2011). Quantifying the ease of scientific discovery. Scientometrics, 86(2), 245–250.CrossRefGoogle Scholar
  2. Carla, M. A., Pinto, A. M. L., & Machado, J. A. T. (2012). A review of power laws in real life phenomena. Communications in Nonlinear Science and Numerical Simulation, 17(9), 3558–3578.CrossRefzbMATHMathSciNetGoogle Scholar
  3. Dugowson, S. (1994). Les différentielles métaphysiques (histoire et philosophie de la généralisation de l’ordre de dérivation). PhD Thèse, Université Paris Nord, Paris, France.Google Scholar
  4. Eames, C., & Redheffer, R. M., & International Business Machines Corporation. (1966). Men of modern mathematics: A history chart of mathematicians from 1000 to 1900. Armonk: International Business Machines Corporation. Retrieved from http://books.google.pt/books?id=y8VaYgEACAAJ.
  5. Kurzweil, R. (2005). The singularity Is near: When humans transcend biology. London: Viking Press.Google Scholar
  6. Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–324.Google Scholar
  7. Machado, J. A. T. (2011). And i say to myself: “What a fractional world!”. Fractional Calculus & Applied Analysis, 14(4), 635–654.CrossRefzbMATHGoogle Scholar
  8. Machado, J. A. T., Kiryakova, V., & Mainardi, F. (2010a). A poster about the old history of fractional calculus. Fractional Calculus & Applied Analysis, 13(4), 447–454.Google Scholar
  9. Machado, J. A. T., Kiryakova, V., & Mainardi, F. (2010b). A poster about the recent history of fractional calculus. Fractional Calculus & Applied Analysis, 13(3), 329–334.Google Scholar
  10. Machado, J. A. T., Kiryakova, V., & Mainardi, F. (2011). Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulations, 16(3), 1140–1153.Google Scholar
  11. Machado, J. A. T, Galhano, A. M., & Trujillo, J. J. (2013). Science metrics on fractional calculus development since 1966. Fractional Calculus & Applied Analysis, 16(2), 479–500.CrossRefGoogle Scholar
  12. Mollick, E. (2006). Establishing Moore’s law. IEEE Annals of the History of Computing, 28(3), 62–75.CrossRefMathSciNetGoogle Scholar
  13. Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8), 114–117.Google Scholar
  14. Newman, M. E. J. (2006). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323–351.CrossRefGoogle Scholar
  15. Oldham, K. B., & Spanier, J. (1974). The fractional calculus: Theory and application of differentiation and integration to arbitrary order. New York: Academic Press.Google Scholar
  16. Ross, B. (ed.) (1974). Fractional calculus and its applications. In Proceedings of the International Conference, New Haven. New York: Springer-Verlag.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • J. A. Tenreiro Machado
    • 1
  • Alexandra M. S. F. Galhano
    • 1
  • Juan J. Trujillo
    • 2
  1. 1.Department of Electrical EngineeringInstitute of Engineering, Polytechnic of PortoPortoPortugal
  2. 2.Departamento de Analisis MatematicoUniversidad de La LagunaLa LagunaSpain

Personalised recommendations