Advertisement

Scientometrics

, Volume 97, Issue 3, pp 743–765 | Cite as

Co-word based thematic analysis of renewable energy (1990–2010)

  • Luz M. Romo-Fernández
  • Vicente P. Guerrero-Bote
  • Félix Moya-Anegón
Article

Abstract

This article describes an analysis of keywords which was aimed at revealing publication patterns in the field of renewable energy, including the temporal evolution of its different research lines over the last two decades. To this end, we first retrieved the records of the sample, then we processed the keywords to resolve their obvious problems of synonymy and to limit the study to those most used. The final results showed a clear increase in scientific production related to alternative energies, and a structure corresponding to five major clusters which, at a finer level of resolution, were decomposed into 22. We analyzed the structure of the clusters and their temporal evolution, paying particular attention to uncovering the bursty periods of the different lines of research.

Keywords

Bibliometrics Co-word analysis Renewable energy Clustering 

Notes

Acknowledgments

Funding

This work was financed by the Junta de Extremadura—Consejería de Educación Ciencia & Tecnología and the Fondo Social Europeo as part of predoctoral studentship PRE07051 and the research group grant GR10019, and by the Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2008-2011 and the Fondo Europeo de Desarrollo Regional (FEDER) as part of research projects TIN2008-06514-C02-01 and TIN2008-06514-C02-02.

References

  1. Archambault, É., Campbell, D., Gingras, Y., & Larivière, V. (2009). Comparing bibliometric statistics obtained from the web of science and scopus. Journal of the American Society for Information Science and Technology (JASIST), 60(7), 1320–1326.CrossRefGoogle Scholar
  2. Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: the case of polymer chemistry. Scientometrics, 22(1), 153–203.CrossRefGoogle Scholar
  3. Callon, M., Courtial, J. P., & Penan, H. (1995). Cienciometría. El estudio cuantitativo de la actividad científica: de la bibliometría a la vigencia tecnológica. Gijón: Ediciones TREA.Google Scholar
  4. Chen, Y. H., Chen, C. Y., & Lee, S. C. (2010). Technology forecasting of new clean energy: the example of hydrogen energy and fuel cell. African Journal of Business Management, 4(7), 1372–1380.Google Scholar
  5. Corera Álvarez, E., & Moya-Anegón, F. (2009). Chemistry in Spain: bibliometric analysis through Scopus. Chemistry Today, 27(6), 61–64.Google Scholar
  6. Ding, Y., Chowdhury, G. G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using co-word analysis. Information Processing and Management, 37(6), 817–842.CrossRefzbMATHGoogle Scholar
  7. Fu, H. Z., Ho, Y. S., Sui, Y. M., & Li, Z. S. (2010). A bibliometric analysis of solid waste research during the period 1993–2008. Waste Management, 30(12), 2410–2417.CrossRefGoogle Scholar
  8. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Gorraiz, J., Gumpenberger, C., & Wieland, M. (2011). Galton 2011 revisited: a bibliometric journey in the footprints of a universal genius. Scientometrics, 88(2), 627–652.CrossRefGoogle Scholar
  10. Guerrero-Bote, V. P., Gómez-Crisostomo, R., Romo-Fernández, L. M., & Moya-Anegón, F. (2009). Visibility and responsibility of women in research papers through the order of signatures: the case of the University of Extremadura (1990–2005). Scientometrics, 81, 225–238.CrossRefGoogle Scholar
  11. Hane, P. (2004). Elsevier announces Scopus service. Information today, http://newsbreaks.infotoday.com/nbreader.asp?ArticleID=16494. Accessed 9 June 2011.
  12. Jacso, P. (2011). The h-index, h-core citation rate and the bibliometric profile of the Scopus database. Online Information Review, 35(3), 492–501.CrossRefGoogle Scholar
  13. Kajikawa, Y., Yoshikawa, J., Takeda, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75, 771–782.CrossRefGoogle Scholar
  14. Kleinberg, J. (2002). Bursty and hierarchical structure in streams, Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 91–101). New York: ACM.Google Scholar
  15. Kleinberg, J. (2004). Temporal dynamics of on-line information streams. In M. Garofalakis, J. Gehrke, & R. Rastogi (Eds.), Data stream management: processing high-speed data streams. Berlin: Springer.Google Scholar
  16. Leydesdorff, L., Moya Anegón, F., & Guerrero Bote, V. P. (2010). Journal maps on the basis of Scopus data: a comparison with the journal citation reports of the ISI. Journal of the American Society for Information Science and Technology, 61(2), 352–369.Google Scholar
  17. Liu, X. J., Zhang, L. A., & Hong, S. (2011). Global biodiversity research during 1900–2009: a bibliometric analysis. Biodiversity and Conservation, 20(4), 807–826.CrossRefGoogle Scholar
  18. López, Illescas C., de Moya Anegón, F., & Moed, H. F. (2008). The actual citation impact of European oncological research. European Journal of Cancer, 44, 228–236.CrossRefGoogle Scholar
  19. Mane, K., & Börner, K. (2004). Mapping topics and topic bursts in PNAS. Proceedings of the National Academy of Sciences, 101(Suppl.1), 5287–5290.CrossRefGoogle Scholar
  20. Miguel, S., Chinchilla-Rodriguez, Z., & Moya-Anegón, F. (2011). Open access and Scopus: a new approach to scientific visibility from the standpoint of access. Journal of the American Society for Information Science and Technology, 62(6), 1130–1145.CrossRefGoogle Scholar
  21. Moya Anegón, F., Chinchilla Rodríguez, Z., Vargas Quesada, B., Corera Álvarez, E., Muñoz Fernández, F. J., González Molina, A., et al. (2007). Coverage analysis of Scopus: a journal metric approach. Scientometrics, 73(1), 53–78.CrossRefGoogle Scholar
  22. Neff, M. W., & Corley, E. A. (2009). 35 years and 160,000 articles: a bibliometric exploration of the evolution of ecology. Scientometrics, 80(3), 657–682.CrossRefGoogle Scholar
  23. Pickering, B. (2004). Elsevier prepares Scopus to rival ISI Web of science, Information world review. Amsterdam: Elsevier.Google Scholar
  24. Romo-Fernández, L. M., López-Pujalte, C., Guerrero-Bote, V. P., & Moya-Anegón, F. (2011). Analysis of Europe’s scientific production on renewable energies. Renewable Energy, 36(9), 2529–2537.CrossRefGoogle Scholar
  25. Romo-Fernández, L. M., Guerrero-Bote, V. P., Moya-Anegón, F. (2012). World scientific production on renewable energy, sustainability and the environment. Energy for Sustainable Development, 16, 500–508.Google Scholar
  26. Sammon, J. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, 18(5), 401–409.CrossRefGoogle Scholar
  27. Suk, F. M., Lien, G. S., Yu, T. C., & Ho, Y. S. (2011). Global trends in Helicobacter pylori research from 1991 to 2008 analyzed with the Science Citation Index Expanded. European Journal of Gastroenterology and Hepatology, 23(4), 295–301.CrossRefGoogle Scholar
  28. Tanakaa, H., & Ho, Y. S. (2011). Global trends and performances of desalination research. Desalination and Water Treatment, 25(1–3), 1–12.CrossRefGoogle Scholar
  29. Van Eck, N. J., & Waltman, L. (2010a). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  30. Van Eck, N. J., & Waltman, L. (2010b). A comparison of two techniques for bibliometric mapping: multi-dimensional scaling and VOS. Journal of the American Society for Information Science, 61(12), 2405–2416.CrossRefGoogle Scholar
  31. Viedma del Jesus, M. I., Perakakis, P., Muñoz, M. A., López-Herrera, A. G., & Vila, J. (2011). Sketching the first 45 years of the journal Psychophysiology (1964–2008): a co-word-based analysis. Psychophysiology, 48(8), 1029–1036.CrossRefGoogle Scholar
  32. Woon, W. L., Henschel, A. & Madnick, S. (2009). A framework for technology forecasting and visualization. 2009 International conference on innovations in information technology, IIT ‘09, pp 155–159.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Luz M. Romo-Fernández
    • 1
  • Vicente P. Guerrero-Bote
    • 1
  • Félix Moya-Anegón
    • 2
  1. 1.Department of Information and Communication, SCImago GroupUniversity of ExtremaduraBadajozSpain
  2. 2.CSIC, CCHS, IPP, SCImago GroupMadridSpain

Personalised recommendations