, Volume 96, Issue 3, pp 845–864 | Cite as

On bibliographic networks

  • Vladimir Batagelj
  • Monika Cerinšek


In the paper we show that the bibliographic data can be transformed into a collection of compatible networks. Using network multiplication different interesting derived networks can be obtained. In defining them an appropriate normalization should be considered. The proposed approach can be applied also to other collections of compatible networks. The networks obtained from the bibliographic data bases can be large (hundreds of thousands of vertices). Fortunately they are sparse and can be still processed relatively fast. We answer the question when the multiplication of sparse networks preserves sparseness. The proposed approaches are illustrated with analyses of collection of networks on the topic "social network" obtained from the Web of Science. The works with large number of co-authors add large complete subgraphs to standard collaboration network thus bluring the collaboration structure. We show that using an appropriate normalization their effect can be neutralized. Among other, we propose a measure of collaborativness of authors with respect to a given bibliography and show how to compute the network of citations between authors and identify citation communities.


Co-authorship Collaboration Two-mode network Network multiplication Sparse network Normalization 

Mathematics Subject Classification (2000)

91D30 62H30 68W40 93A15 



The work was supported in part by the ARRS, Slovenia, grant P1-0294, as well as by grant within the EUROCORES Programme EUROGIGA (project GReGAS) of the European Science Foundation. The second author was financed in part by the European Union, European Social Fund.


  1. Ahmed, A., Batagelj, V., Fu, X., Hong, S. H., Merrick, D., & Mrvar, A. (2007). Visualisation and analysis of the internet movie database. Proceedings of the Asia-Pacific Symposium on Visualisation (APVIS2007) (pp. 17–24). doi: 10.1109/APVIS.2007.329304
  2. Batagelj, V. (1994). Semirings for social networks analysis. The Journal of Mathematical Sociology, 19(1), 53–68. doi: 10.1080/0022250X.1994.9990135 MathSciNetzbMATHCrossRefGoogle Scholar
  3. Batagelj, V. (2007). Wos2Pajek—networks from web of science [Data converter]. Retrieved November 5, 2012.
  4. Batagelj, V. (2009). Social network analysis, large-scale. In R.A. Meyers, (Ed.), Encyclopedia of Complexity and Systems Science (pp. 8245–8265) New York, NY: Springer.CrossRefGoogle Scholar
  5. Pajek wiki (2012). Retrieved November 5, 2012.
  6. Batagelj, V., & Zaveršnik, M. (2011). Fast algorithms for determining (generalized) core groups in social networks. Advances in Data Analysis and Classification, 5(2), 129–145. doi: 10.1007/s11634-010-0079-y MathSciNetCrossRefGoogle Scholar
  7. De Nooy, W., Mrvar, A., & Batagelj, V. (2012). Exploratory Social Network Analysis with Pajek (Structural Analysis in the Social Sciences), revised and expanded 2nd edn. Cambridge: Cambridge University Press.Google Scholar
  8. Kejžar, N., Korenjak Černe, S., & Batagelj, V. (2010). Network analysis of works on clustering and classification from Web of Science: classification as a tool for research. In H. Locarek-Junge, & C. Weihs (Eds.), Proceedings of IFCS 2009. Studies in Classification, Data Analysis, and Knowledge Organization (pp. 525–536). Berlin: Springer. doi: 10.1007/978-3-642-10745-0_57
  9. Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10–25. doi: 10.1002/asi.5090140103 CrossRefGoogle Scholar
  10. Newman, M. E. J. (2001). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1), 0161321–0161327. doi: 10.1103/PhysRevE.64.016132 Google Scholar
  11. Quattrociocchi, W., & Amblard, W. (2011). Selection in scientific networks. Social Network Analysis and Mining, 2(3), 229–237. doi: 10.1007/s13278-011-0043-7 CrossRefGoogle Scholar
  12. Rosengren, K. E. (1968). Sociological Aspects of the Literary System. Stockholm, Sweden: Natur och Kultur.Google Scholar
  13. Salton, G., & McGill, M. J. (1987). Introduction to modern Information Retrieval. New York: McGraw-Hill.Google Scholar
  14. Small, H. G. (1973). Co-citation in the scientific literature: a new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269. doi: 10.1002/asi.4630240406 CrossRefGoogle Scholar
  15. Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. White, H. D., & Griffith, B. C. (1981). Author co-citation: a literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163–171. doi: 10.1002/asi.4630320302 CrossRefGoogle Scholar
  17. Zaveršnik, M., & Batagelj, V. (2004). Islands. In XXIV. International Sunbelt Social Network Conference, Portorož, Slovenia.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.FMF, Department of MathematicsUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Hruška d.o.o.LjubljanaSlovenia

Personalised recommendations