Scientometrics

, Volume 98, Issue 3, pp 1583–1599 | Cite as

Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)

Article

Abstract

We report on the development of an interface to the US Patent and Trademark Office (USPTO) that allows for the mapping of patent portfolios as overlays to basemaps constructed from citation relations among all patents contained in this database during the period 1976–2011. Both the interface and the data are in the public domain; the freeware programs VOSViewer and/or Pajek can be used for the visualization. These basemaps and overlays can be generated at both the 3-digit and 4-digit levels of the International Patent Classification (IPC) of the world intellectual property organization (WIPO). The basemaps can provide a stable mental framework for analysts to follow developments over searches for different years, which can be animated. The full flexibility of the advanced search engines of USPTO are available for generating sets of patents and/or patent applications which can thus be visualized and compared. This instrument allows for addressing questions about technological distance, diversity in portfolios, and animating the developments of both technologies and technological capacities of organizations over time.

Keywords

Map USPTO IPC Patent Classification Overlay 

References

  1. Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550–560.CrossRefGoogle Scholar
  2. Alcácer, J., Gittelman, M., & Sampat, B. (2009). Applicant and examiner citations in U.S. patents: an overview and analysis. Research Policy, 38(2), 415–427.CrossRefGoogle Scholar
  3. Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 8(10), 10008.CrossRefGoogle Scholar
  4. Bornmann, L., & Leydesdorff, L. (2011). Which cities produce excellent papers worldwide more than can be expected? A new mapping approach–using Google Maps–based on statistical significance testing. Journal of the American Society for Information Science and Technology, 62(10), 1954–1962.CrossRefGoogle Scholar
  5. Boyack, K. W., Börner, K., & Klavans, R. (2009). Mapping the structure and evolution of chemistry research. Scientometrics, 79(1), 45–60.CrossRefGoogle Scholar
  6. Boyack, K. W., & Klavans, R. (2008). Measuring science–technology interaction using rare inventor–author names. Journal of Informetrics, 2(3), 173–182.CrossRefGoogle Scholar
  7. Breschi, S., Lissoni, F., & Malerba, F. (2003). Knowledge-relatedness in firm technological diversification. Research Policy, 32(1), 69–87.CrossRefGoogle Scholar
  8. Criscuolo, P. (2006). The ‘home advantage’ effect and patent families: a comparison of OECD triadic patents, the USTPTO and EPO. Scientometrics, 66(1), 23–41.CrossRefGoogle Scholar
  9. Criscuolo, P., & Verspagen, B. (2008). Does it matter where patent citations come from? Inventor versus examiner citations in European patents. Research Policy, 37(10), 1892–1908.CrossRefGoogle Scholar
  10. de Nooy, W., Mrvar, A., & Batgelj, V. (2011). Exploratory Social Network Analysis with Pajek (2nd ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
  11. Dolfsma, W., & Leydesdorff, L. (2011). Innovation systems as patent networks: the Netherlands, India and nanotech. Innovation Management, Policy and Practice, 13(3), 311–326.CrossRefGoogle Scholar
  12. Griliches, Z. (Ed.). (1984). R&D, Patents, and Productivity. Chicago, IL: University of Chicago Press.Google Scholar
  13. Griliches, Z. (1994). Productivity, R&D and the Data constraint. American Economic Review, 84(1), 1–23.Google Scholar
  14. Helbing, D., & Balietti, S. (2011). How to create an innovation accelerator. The European Physical Journal-Special Topics, 195(1), 101–136.CrossRefGoogle Scholar
  15. Henderson, R., Jaffe, A., & Trajtenberg, M. (2005). Patent citations and the geography of knowledge spillovers: a reassessment—comment. The American Economic Review, 95(1), 461–464.CrossRefGoogle Scholar
  16. Hinze, S., Reiss, T., & Schmoch, U. (1997). Statistical Analysis on the Distance Between Fields of Technology. Innovation Systems and European Integration (ISE), Targeted Socio-Economic Research Program, 4th Framework Program of the European Commission (DG XII). Karlsruhe: Fraunhofer Institute for Systems and Innovation Research (ISI).Google Scholar
  17. Izsák, J., & Papp, L. (1995). Application of the quadratic entropy indices for diversity studies of drosophilid assemblages. Environmental and Ecological Statistics, 2(3), 213–224.CrossRefGoogle Scholar
  18. Jaffe, A. B. (1986). Technological Opportunity and Spillovers of R&D: evidence from Firm’s Patents, Profits, and Market Value. American Economic Review, 76(5), 984–1001.Google Scholar
  19. Jaffe, A. B. (1989). Real effects of academic research. The American Economic Review, 957–970.Google Scholar
  20. Jaffe, A. B., & Trajtenberg, M. (2002). Patents, Citations, and Innovations: A Window on the Knowledge Economy. Cambridge: MIT Press.Google Scholar
  21. Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7–15.CrossRefMATHMathSciNetGoogle Scholar
  22. Kay, L., Newman, N., Youtie, J., Porter, A. L., & Rafols, I. (2012). Patent Overlay Mapping: Visualizing Technological Distance. Arxiv preprint arXiv:1208.4380.Google Scholar
  23. Klavans, R., & Boyack, K. (2009). Towards a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455–476.CrossRefGoogle Scholar
  24. Kline, S., & Rosenberg, N. (1986). An overview of innovation. In R. Landau & N. Rosenberg (Eds.), The Positive Sum Strategy: Harnessing Technology for Economic Growth (pp. 275–306). Washington, DC: National Academy Press.Google Scholar
  25. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.CrossRefMATHMathSciNetGoogle Scholar
  26. Leydesdorff, L. (2004). The university-industry knowledge relationship: analyzing patents and the science base of technologies. Journal of the American Society for Information Science and Technology, 55(11), 991–1001.CrossRefGoogle Scholar
  27. Leydesdorff, L. (2008). Patent classifications as indicators of intellectual organization. Journal of the American Society for Information Science and Technology, 59(10), 1582–1597.CrossRefGoogle Scholar
  28. Leydesdorff, L., & Bornmann, L. (2012). Mapping (USPTO) patent data using overlays to Google Maps. Journal of the American Society for Information Science and Technology, 63(7), 1442–1458.CrossRefGoogle Scholar
  29. Leydesdorff, L., Hammarfelt, B., & Salah, A. A. A. (2011). The structure of the arts and humanities citation index: a mapping on the basis of aggregated citations among 1,157 journals. Journal of the American Society for Information Science and Technology, 62(12), 2414–2426.CrossRefGoogle Scholar
  30. Leydesdorff, L., & Meyer, M. (2010). The Decline of University Patenting and the End of the Bayh-Dole Effect. Scientometrics, 83(2), 355–362.CrossRefGoogle Scholar
  31. Leydesdorff, L., & Opthof, T. (2012). Citation analysis with medical subject headings (MeSH) using the web of knowledge: a new routine. Journal of the American Society for Information Science and Technology (in press).Google Scholar
  32. Leydesdorff, L., & Persson, O. (2010). Mapping the geography of science: distribution patterns and networks of relations among cities and institutes. Journal of the American Society of Information Science and Technology, 61(8), 1622–1634.Google Scholar
  33. Leydesdorff, L., & Rafols, I. (2011a). Indicators of the interdisciplinarity of journals: diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.CrossRefGoogle Scholar
  34. Leydesdorff, L., & Rafols, I. (2011b). How do emerging technologies conquer the world? an exploration of patterns of diffusion and network formation. Journal of the American Society for Information Science and Technology, 62(5), 846–860.CrossRefGoogle Scholar
  35. Leydesdorff, L., & Rafols, I. (2012). Interactive overlays: a new method for generating global journal maps from web-of-science data. Journal of Informetrics, 6(3), 318–332.CrossRefGoogle Scholar
  36. Leydesdorff, L., Rotolo, D., & de Nooy, W. (in press). Innovation as a nonlinear process, the scientometric perspective, and the specification of an “innovation opportunities explorer”. Technology Analysis and Strategic Management. http://arxiv.org/abs/1202.6235.
  37. Leydesdorff, L., Rotolo, D., & Rafols, I. (2012). Bibliometric perspectives on medical innovation using the medical subject headings (MeSH) of PubMed. Journal of the American Society for Information Science and Technology, 63(11), 2239–2253.CrossRefGoogle Scholar
  38. Narin, F. (2012). Tracing the Paths from Basic Research to Economic Impact. F&M Scientist (under submission).Google Scholar
  39. Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing link between US technology and public science. Research Policy, 26(3), 317–330.CrossRefGoogle Scholar
  40. Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 066133.CrossRefGoogle Scholar
  41. Patel, P., & Pavitt, K. (1997). The technological competencies of the world’s largest firms: complex and path-dependent, but not much variety. Research Policy, 26(2), 141–156.CrossRefGoogle Scholar
  42. Price, D. J. S. (1984). The science/technology relationship, the craft of experimental science, and policy for the improvement of high technology innovation. Research Policy, 13, 3–20.CrossRefGoogle Scholar
  43. Rafols, I., Leydesdorff, L., O’Hare, A., Nightingale, P., & Stirling, A. (2012). How journal rankings can suppress interdisciplinary research: a comparison between innovation studies and business and management. Research Policy, 41(7), 1262–1282.CrossRefGoogle Scholar
  44. Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience. Scientometrics, 82(2), 263–287.CrossRefGoogle Scholar
  45. Rafols, I., Porter, A., & Leydesdorff, L. (2010). Science overlay maps: a new tool for research policy and library management. Journal of the American Society for Information Science and Technology, 61(9), 1871–1887.CrossRefGoogle Scholar
  46. Rao, C. R. (1982). Diversity: Its measurement, decomposition, apportionment and analysis. Sankhy : The Indian Journal of Statistics, Series A, 44(1), 1–22.MATHGoogle Scholar
  47. Rosenberg, N., & Nelson, R. R. (1994). American universities and technical advance in industry. Research Policy, 23, 323–348.CrossRefGoogle Scholar
  48. Schmoch, U., Laville, F., Patel, P., & Frietsch, R. (2003). Linking technology areas to industrial sectors. Final Report to the European Commission, DG Research. ftp://ftp.cordis.europa.eu/pub/indicators/docs/ind_report_isi_ost_spru.pdf.
  49. Schoen, A. (2011). A Global Map of Technology. Paper presented at the IPTS Patent Workshop, Seville, Spain, June 13–14.Google Scholar
  50. Schoen, A., Villard, L., Laurens, P., Cointet, J.-P., Heimeriks, G., & Alkemade, F. (2012). The Network Structure of Technological Developments; Technological Distance as a Walk on the Technology Map. Paper presented at the Science & Technology Inidicators (STI) 2012 Montreal.Google Scholar
  51. Shelton, R. D., & Leydesdorff, L. (2012). Publish or Patent: bibliometric evidence for empirical trade-offs in national funding strategies. Journal of the American Society for Information Science and Technology, 63(3), 498–511.CrossRefGoogle Scholar
  52. Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society, Interface, 4(15), 707–719.CrossRefGoogle Scholar
  53. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  54. van Eck, N. J., Waltman, L., Dekker, R., & van den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405–2416.CrossRefGoogle Scholar
  55. Von Hippel, E. (1988). The Sources of Innovation. New York/Oxford: Oxford University Press.Google Scholar
  56. Waltman, L., van Eck, N. J., & Noyons, E. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Loet Leydesdorff
    • 1
  • Duncan Kushnir
    • 2
  • Ismael Rafols
    • 3
    • 4
  1. 1.Amsterdam School of Communication Research (ASCoR)University of AmsterdamAmsterdamThe Netherlands
  2. 2.Environmental Systems AnalysisChalmers University of TechnologyGöteborgSweden
  3. 3.SPRU (Science and Technology Policy Research)University of Sussex, Freeman CentreFalmer BrightonUK
  4. 4.Ingenio (CSIC-UPV)Universitat Politècnica de ValènciaValènciaSpain

Personalised recommendations