, Volume 95, Issue 2, pp 717–729 | Cite as

Tracing scientist’s research trends realtimely

  • Xianwen Wang
  • Zhi Wang
  • Shenmeng Xu


In this research, we propose a method to trace scientist’s research trends realtimely. By monitoring the downloads of scientific articles in the journal of Scientometrics for 744 h, namely one month, we investigate the download statistics. Then we aggregate the keywords in these downloaded research papers, and analyze the trends of article downloading and keyword downloading. Furthermore, taking both the downloads of keywords and articles into consideration, we design a method to detect the emerging research trends. We find that in scientometrics field, social media, new indices to quantify scientific productivity (g-index), webometrics, semantic, text mining, and open access are emerging fields that scientometrics researchers are focusing on.


Research trend Altmetrics Springer Realtime Scientometrics Download 



The research is supported by the project of “Social Science Foundation of China”(Grant No. 10CZX011), the project of “Specialized Research Fund for the Doctoral Program of Higher Education of China” (Grant No. 2009041110001), as well as the project of “Fundamental Research Funds for the Central Universities” (Grant No. DUT12RW309).


  1. Arrue, J. L., & Lopez, M. V. (1991). Conservation tillage research trends and priorities. Suelo Y Planta, 1, 555–564.Google Scholar
  2. Borgman, C. L. (2007). Scholarship in the digital age information, infrastructure and the internet. London: MIT Press.Google Scholar
  3. Braun, T., Glänzel, W., & Grupp, H. (1995). The scientometric weight of 50 nations in 27 science areas, 1989–1993. Part I. All fields combined, mathematics, engineering, chemistry and physics. Scientometrics, 33, 263–293.CrossRefGoogle Scholar
  4. Braun, T., Schubert, A. P., & Kostoff, R. N. (2000). Growth and trends of fullerene research as reflected in its journal literature. Chem Rev, 100, 23–38.CrossRefGoogle Scholar
  5. Brody, T., Harnad, S., & Carr, L. (2006). Earlier web usage statistics as predictors of later citation impact. J Am Soc Inf Sci Technol, 57, 1060–1072.CrossRefGoogle Scholar
  6. Cole, S. (1989). Citation and the evaluation of individual scientiste. Trends Biochem Sci, 14, 9–13.CrossRefGoogle Scholar
  7. Ding, Y., Chowdhury, G. G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using co-word analysis. Inf Process Manage, 37, 817–842.zbMATHCrossRefGoogle Scholar
  8. Ebner, M., & Reinhardt, W. (2009). Social networking in scientific conferences–twitter as tool for strengthen a scientific community. Proceedings of the 1st International Workshop on Science (pp. 1–8).Google Scholar
  9. Greenhow, C. (2009). Social scholarship: applying social networking technologies to research practices. Am Lib Assoc, 37, 42–47.Google Scholar
  10. Groth, P., & Gurney, T. (2010). Studying scientific discourse on the Web using bibliometrics: a chemistry blogging case study. In: Web Science Conf., 2010, Raleigh, NC.Google Scholar
  11. Jahandideh, S., & Abdolmaleki, P. (2007). Prediction of future citations of a research paper from number of its internet downloads. Med Hypotheses, 69, 458–459.CrossRefGoogle Scholar
  12. Keiser, J., & Utzinger, J. (2005). Trends in the core literature on tropical medicine: a bibliometric analysis from 1952–2002. Scientometrics, 62, 351–365.CrossRefGoogle Scholar
  13. Kirkup, G. (2010). Academic blogging: academic practice and academic identity. Lond Rev Educ, 8, 75–84.CrossRefGoogle Scholar
  14. Kjellberg, S. (2011). I am a blogging researcher: motivations for blogging in a scholarly context. Retrieved December 21, 2011 from
  15. Koblenz. (2011). Tracking scholarly impact on the social Web. Retrieved December 21, 2011 from
  16. Kurtz, M. J., & Bollen, J. (2010). Usage bibliometrics. Annu Rev Inf Sci Technol, 44, 1–64.CrossRefGoogle Scholar
  17. Letierce, J., Passant, A., Decker, S., & Breslin, J.G. (2010). Understanding how twitter is used to spread scientific messages. In: Web Science Conf., 2010, Raleigh, NC.Google Scholar
  18. Li, L. L., Ding, G. H., Feng, N., Wang, M. H., & Ho, Y. S. (2009). Global stem cell research trend: bibliometric analysis as a tool for mapping of trends from 1991 to 2006. Scientometrics, 80, 39–58.CrossRefGoogle Scholar
  19. Lovink, G. (2008). Zero comments. Blogging and Critical Internet Culture. London: Routledge.Google Scholar
  20. MacRoberts, M. H., & MacRoberts, B. R. (2010). Problems of citation analysis: a study of uncited and seldom-cited influences. J Am Soc Inf Sci Technol, 61, 1–13.CrossRefGoogle Scholar
  21. Moed, H. F. (2005). Statistical relationships between downloads and citations at the level of individual documents within a single journal. J Am Soc Inf Sci Technol, 56, 1088–1097.CrossRefGoogle Scholar
  22. Neylon, C., & Wu, S. (2009). Article-level metrics and the evolution of scientific impact. PLoS Biol, 7, e1000242.CrossRefGoogle Scholar
  23. O’Leary, D. E. (2008). The relationship between citations and number of downloads in decision support systems. Decis Support Syst, 45, 972–980.CrossRefGoogle Scholar
  24. Priem, J., & Costello, K. L. (2010). How and why scholars cite on Twitter. Proc Am Soc Inf Sci Technol, 47, 1–4.CrossRefGoogle Scholar
  25. Priem, J., & Hemminger, B. (2010). Scientometrics 2.0: new metrics of scholarly impact on the social Web. First Monday, 15.Google Scholar
  26. Priem, J., Taraborelli, D., Groth, P., & Neylon, C. (2010), Alt-metrics: A manifesto, (v.1.0). Retrieved April 21, 2012 from
  27. Qin, J. (2000). Semantic similarities between a keyword database and a controlled vocabulary database: an investigation in the antibiotic resistance literature. J Am Soc Inf Sci, 51, 166–180.CrossRefGoogle Scholar
  28. Shuai, X., Pepe, A., & BollenHow, J. (2012). How the scientific community reacts to newly submitted preprints: article downloads, twitter mentions, and citations. CoRR abs/1202.2461. Google Scholar
  29. Veletsianos, G., & Kimmons, R. (2012). Networked participatory scholarship: emergent techno-cultural pressures toward open and digital scholarship in online networks. Comput Educ, 58, 766–774.CrossRefGoogle Scholar
  30. Wang, X. W., Xu, S. M., Peng, L., Wang, Z., Wang, C. L., Zhang, C. B., et al. (2012). Exploring scientists’ working timetable: do scientists often work overtime? J Informetr, 6, 655–660.zbMATHCrossRefGoogle Scholar
  31. Weller, K., Dröge, E., & Puschmann, C. (2011). Citation analysis in twitter: approaches for defining and measuring information ows within tweets during scientific conferences. In: Making Sense of Microposts (#MSM2011), pp. 1–12.Google Scholar
  32. Weller, K., & Puschmann, C. (2011). Twitter for scientific communication: how can citations/references be identified and measured? In: Web Science Conf., 2011, Germany.Google Scholar
  33. Xie, S. D., Zhang, J., & Ho, Y. S. (2008). Assessment of world aerosol research trends by bibliometric analysis. Scientometrics, 77, 113–130.CrossRefGoogle Scholar
  34. Zitt, M., & Bassecoulard, E. (1994). Development of a method for detection and trend analysis of research fronts built by lexical or cocitation analysis. Scientometrics, 30, 333–351.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.WISE Lab, Faculty of Humanities and Social SciencesDalian University of TechnologyDalianChina
  2. 2.School of Public Administration and LawDalian University of TechnologyDalianChina

Personalised recommendations