, Volume 93, Issue 3, pp 699–717 | Cite as

Blockmodeling of co-authorship networks in library and information science in Argentina: a case study

  • Zaida Chinchilla-Rodríguez
  • Anuska Ferligoj
  • Sandra Miguel
  • Luka Kronegger
  • Félix de Moya-Anegón


The paper introduces the use of blockmodeling in the micro-level study of the internal structure of co-authorship networks over time. Variations in scientific productivity and researcher or research group visibility were determined by observing authors’ role in the core-periphery structure and crossing this information with bibliometric data. Three techniques were applied to represent the structure of collaborative science: (1) the blockmodeling; (2) the Kamada-Kawai algorithm based on the similarities in co-authorships present in the documents analysed; (3) bibliometrics to determine output volume, impact and degree of collaboration from the bibliographic data drawn from publications. The goal was to determine the extent to which the use of these two complementary approaches, in conjunction with bibliometric data, provides greater insight into the structure and characteristics of a given field of scientific endeavour. The paper describes certain features of Pajek software and how it can be used to study research group composition, structure and dynamics. The approach combines bibliometric and social network analysis to explore scientific collaboration networks and monitor individual and group careers from new perspectives. Its application on a small-scale case study is intended as an example and can be used in other disciplines. It may be very useful for the appraisal of scientific developments.


Scientific collaboration Bibliometrics Blockmodeling Social network analysis 



The authors wish to thank Claudia González for compiling the data, Vladimir Batagelj for his technical support and suggestions, anonymous referees for comments that improved the present analysis and Margaret Clark for editing the English text. This research was partially funded by the Spanish National Research Council under the project entitled “Generación de herramientas cienciométricas para el análisis de la colaboración científica” (Proyecto Intramural CSIC 200810I210).


  1. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.MathSciNetCrossRefGoogle Scholar
  2. Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bartneck, C., & Hu, J. (2010). The fruits of collaboration in a multidisciplinary field. Scientometrics, 85, 41–52.CrossRefGoogle Scholar
  4. Batagelj, V., & Mrvar, A. (2003). Analysis and visualization of large networks. In M. Jünger & P. Mutzel (Eds.), Graph drawing software (pp. 77–103). Berlin: Springer.Google Scholar
  5. Beaver, D. (2001). Reflections on scientific collaboration (and its study): past, present, and future. Scientometrics, 52, 365–377.CrossRefGoogle Scholar
  6. Beaver, D. (2004). Does collaborative research have greater epistemic authority? Scientometrics, 60(3), 399–408.CrossRefGoogle Scholar
  7. Borgatti, S. P., & Everett, M. G. (1999). Models of core/periphery structures. Soc Netw, 21, 375–395.CrossRefGoogle Scholar
  8. Borner, K., Dall’Asta, L., Ke, W., & Vespignani, A. (2005). Studying the emerging global brain: analyzing and visualizing the impact of co-authorship teams. Complexity, 10(4), 57–67.CrossRefGoogle Scholar
  9. Bozeman, B., & Lee, S. (2005). The impact of research collaboration on scientific productivity. Soc Stud Sci, 35(5), 673–702.CrossRefGoogle Scholar
  10. Braam, R., & van den Besselaar, P. (2010). Life cycles of research groups: the case of CWTS. Res Eval, 19(3), 173–184.CrossRefGoogle Scholar
  11. Braun, T., Glänzel, W., & Shubert, A. (2001). Publication and collaboration patterns of the authors of neuroscience journals. Scientometrics, 51, 499–510.CrossRefGoogle Scholar
  12. Caníbano, C., & Bozeman, B. (2009). Curriculum vitae method in science policy and research evaluation: the state-of-the-art. Res Eval, 18(2), 86–94.CrossRefGoogle Scholar
  13. Chinchilla-Rodríguez, Z., Benavent-Pérez, M., Miguel, S., Moya-Anegón, F. (2012). International collaboration in medical research in Latin America and the Caribbean (2003–2007). J Am Soc Inform Sci (in press).Google Scholar
  14. Chinchilla-Rodríguez, Z., Vargas-Quesada, B., Hassan-Montero, Y., González-Molina, A., & Moya-Anegón, F. (2010). New approach to the visualization of international scientific collaboration. Inform Visualization, 9(4), 277–287.CrossRefGoogle Scholar
  15. Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling. Cambridge: Cambridge University Press.Google Scholar
  16. Ferligoj, A., Doreian, P., & Batagelj, V. (2011). Positions and roles. In J. Scott & P. Carrington (Eds.), Sage handbook of social network analysis (pp. 434–446). Newbury Park: Sage Publications.Google Scholar
  17. Ferligoj, A., & Kronegger, L. (2009). Clustering of attribute and/or relational data. Metodoloski zvezki (Adv Methodol Stat), 6(2), 135–153.Google Scholar
  18. Hurd, J. M. (2000). The transformation of scientific communication: a model for 2020. J Am Soc Inform Sci, 51(14), 1279–1283.CrossRefGoogle Scholar
  19. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Res Policy, 26, 1–18.CrossRefGoogle Scholar
  20. Kronegger, L., Ferligoj, A., & Doreian, P. (2011). On the dynamics of national scientific systems. Qual Quant, 45(5), 989–1015.CrossRefGoogle Scholar
  21. Kronegger, L., Mali, F., Ferligoj, A., & Doreian, P. (2012). Collaboration structures in Slovenian scientific communities. Scientometrics, 90, 631–647.CrossRefGoogle Scholar
  22. Lancho-Barrantes, B. S., Guerrero-Bote, V. P., Chinchilla-Rodríguez, Z., & Moya-Anegón, F. (2012). Citation flows in the zones of influence of scientific collaborations. J Am Soc Inform Sci Technol, 63(3), 481–489.CrossRefGoogle Scholar
  23. Laudel, G. (2002). What do we measure by co-authorship? Res Eval, 11(1), 3–15.CrossRefGoogle Scholar
  24. Leydesdorff, L., & Vaughan, L. (2006). Co-occurrence matrices and their applications in information science: extending ACA to the web environment. J Am Soc Inform Sci Technol, 57(12), 1616–1628.CrossRefGoogle Scholar
  25. Mali, F., Kronegger, L., & Ferligoj, A. (2010). Co-authorship trends and collaboration patterns in the Slovenian sociological community. Corvinus J Sociol Soc Policy, 1(2), 29–50.Google Scholar
  26. Melin, G. (2000). Pragmatism and self-organization: research collaboration at the individual level. Res Policy, 29(1), 31–40.CrossRefGoogle Scholar
  27. Miguel, S. (2009). Oportunidades y desafíos actuales de la investigación en Bibliotecología y Ciencia de la Información. El caso del Departamento de Bibliotecología de la Universidad Nacional de La Plata, Argentina. Información, Cultura y Sociedad, (21), 51–67.
  28. Miguel, S., Chinchilla-Rodríguez, Z., González, C., Moya-Anegón, F. Analysis and visualization of the dynamics of research groups through a comparative input/output perspective. Information Research (in press).Google Scholar
  29. Moed, H. F. (2008). UK research assessment exercises: informed judgments on research quality or quantity? Scientometrics, 74, 141–149.CrossRefGoogle Scholar
  30. Moody, J. (2004). The structure of a social science collaboration network: disciplinary cohesion from 1963 to 1999. Am Sociol Rev, 69(2), 213–238.CrossRefGoogle Scholar
  31. Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proc Nat Acad Sci US, 98(2), 404–409.zbMATHCrossRefGoogle Scholar
  32. Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proc Nat Acad Sci USA, 98 (Suppl. 2), 16, 404-409.Google Scholar
  33. Newman, M. E. J. (2004b). Who is the best connected scientist? A study of scientific coauthorship networks. In E. Ben-Naim, H. Frauenfelder, & Z. Toroczkai (Eds.), Complex networks (pp. 337–370). Berlin: Springer.CrossRefGoogle Scholar
  34. Onofrio, M. G. (2009). The public CV database of Argentine researchers and the ‘CV-minimum’ Latin–American model of standardization of CV information for R&D evaluation and policy-making. Res Eval, 18(2), 95–103.CrossRefGoogle Scholar
  35. Perianes-Rodríguez, A., Chinchilla-Rodríguez, Z., Vargas-Quesada, B., Olmeda-Gómez, C., & Moya-Anegón, F. (2009). Synthetic hybrid indicators based on scientific collaboration to quantify and evaluate individual research results. J Informetr, 3(2), 91–101.CrossRefGoogle Scholar
  36. Persson, O., Glänzel, W., & Danell, R. (2004). Inflationary bibliometric values: the role of scientific collaboration and the need for relative indicators in evaluative studies. Scientometrics, 60(3), 421–432.CrossRefGoogle Scholar
  37. Price, D. (1963). Little science, big science. New York: Columbia University Press.Google Scholar
  38. Price, D., & Beaver, D. (1966). Collaboration in an invisible college. Am Psychol, 21, 1011–1018.CrossRefGoogle Scholar
  39. Price, D. J. S., Gürsey, S. (1976). Studies in scientometrics. Part 1. Transience and continuance in scientific authorship. International Forum on Information and Documentation No. 1, pp. 17–24.Google Scholar
  40. Shaw, D., & Vaughan, L. (2008). Publication and citation patterns among LIS faculty: profiling a “typical professor”. Libr Inform Sci Res, 30(1), 47–55.CrossRefGoogle Scholar
  41. Sonnenwald, D. (2007). Scientific collaborations. Annu Rev Inform Sci Technol, 41, 643–681.CrossRefGoogle Scholar
  42. Wagner, C. S., & Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Res Policy, 34, 1608–1618.CrossRefGoogle Scholar
  43. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.CrossRefGoogle Scholar
  44. White, H. D. (2003). Author cocitation analysis and pearson’s r. J Am Soc Inform Sci Technol, 54(13), 1250–1259.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Zaida Chinchilla-Rodríguez
    • 1
    • 2
  • Anuska Ferligoj
    • 3
  • Sandra Miguel
    • 2
    • 4
  • Luka Kronegger
    • 3
  • Félix de Moya-Anegón
    • 1
    • 2
  1. 1.Consejo Superior de Investigaciones Científicas, Centro de Ciencias Humanas y SocialesInstituto de Políticas y Bienes PúblicosMadridSpain
  2. 2.SCImago Research GroupLjubljanaSlovenia
  3. 3.Faculty of Social SciencesUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Departamento de Bibliotecología, Facultad de Humanidades y Ciencias de la EducaciónUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations