, Volume 94, Issue 1, pp 273–303 | Cite as

Who leads research productivity growth? Guidelines for R&D policy-makers

  • Fernando Jiménez-Sáez
  • Jon Mikel Zabala-Iturriagagoitia
  • Jose Luis Zofío


This paper evaluates to what extent policy-makers have been able to promote the creation and consolidation of comprehensive research groups that contribute to the implementation of a successful innovation system. Malmquist productivity indices are applied in the case of the Spanish Food Technology Program, finding that a large size and a comprehensive multi-dimensional research output are the key features of the leading groups exhibiting high efficiency and productivity levels. While identifying these groups as benchmarks, we conclude that the financial grants allocated by the program, typically aimed at small-sized and partially oriented research groups, have not succeeded in reorienting them in time so as to overcome their limitations. We suggest that this methodology offers relevant conclusions to policy evaluation methods, helping policy-makers to readapt and reorient policies and their associated means, most notably resource allocation (financial schemes), to better respond to the actual needs of research groups in their search for excellence (micro-level perspective), and to adapt future policy design to the achievement of medium-long term policy objectives (meso and macro-level).


Science and technology policy Policy evaluation Malmquist productivity index Data envelopment analysis 

JEL Classification

C43 D24 O47 

Mathematics Subject Classification

19A15 91B38 91B82 



We are grateful to the participants and discussants at the EASST 2010 Conference (September 2nd–4th, Trento, Italy) and the 1st Workshop on Efficiency and Productivity (October 7th–8th, 2010, Valencia, Spain) for their comments and suggestions.


  1. Abbring, J. H., & Heckman, J. J. (2008). Dynamic policy analysis. In L. Mátyás & P. Sevestre (Eds.), The econometrics of panel data (3rd ed., pp. 795–863). Heidelberg: Springer.CrossRefGoogle Scholar
  2. Acosta Ballesteros, J., & Modrego Rico, A. (2001). Public financing of cooperative R&D projects in Spain: the concerted projects under the national R&D plan. Research Policy, 30, 625–641.CrossRefGoogle Scholar
  3. Arbel, A. (1981). Policy evaluation in the dynamic input–output model. International Journal of Systems Science, 12, 255–260.zbMATHCrossRefGoogle Scholar
  4. Arnold, E. (2004). Evaluation research and innovation policy: A systems world needs systems evaluations. Research Evaluation, 13, 3–17.CrossRefGoogle Scholar
  5. Arrow, J. K. (1962). Economic welfare and the allocation of resources for inventions. In R. Nelson (Ed.), The rate and direction of inventive activity: Economic and social factor (pp. 609–625). Princeton: Princeton University Press and NBER.Google Scholar
  6. Autio, E. (1997). New, technology-based firms in innovation networks symplectic and generative impacts. Research Policy, 26, 263–281.CrossRefGoogle Scholar
  7. Balk, B. (2001). Scale efficiency and productivity change. Journal of Productivity Analysis, 15, 153–183.CrossRefGoogle Scholar
  8. Balzat, M., & Hanusch, H. (2004). Recent trends in the research on national innovation systems. Journal of Evolutionary Economics, 14, 197–210.CrossRefGoogle Scholar
  9. Berg, S. A., Førsund, F. R., & Jansen, E. S. (1992). Malmquist indices of productivity growth during the deregulation of Norwegian banking. Scandinavian Journal of Economics, 94, S211–S228.CrossRefGoogle Scholar
  10. Bergek, A., Carlsson, B., Lindmark, S., Rickne, A., & Jacobsson, S. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy, 37, 407–429.CrossRefGoogle Scholar
  11. Bonaccorsi, A., & Daraio, C. (2005). Exploring size and agglomeration effects on public research productivity. Scientometrics, 63(1), 87–120.CrossRefGoogle Scholar
  12. Buisseret, T. J., Cameron, H., & Georghiou, L. (1995). What difference does it make? Additionality in the public support of R&D in large firms. International Journal of Technology Management, 10, 587–600.Google Scholar
  13. Bustelo, M. (2006). The potential role of standards and guidelines in the development of an evaluation culture in Spain. Evaluation, 12, 437–453.CrossRefGoogle Scholar
  14. Chavas, J. P., & Cox, T. M. (1999). A generalized distance function and the analysis of production efficiency. Southern Economic Journal, 66, 295–318.CrossRefGoogle Scholar
  15. CICYT. (1987). Programa Nacional de Tecnología de los Alimentos. Madrid: Ministerio de Educación y Ciencia.Google Scholar
  16. CICYT (1988). Plan Nacional de Investigación Científica y Desarrollo Tecnológico 1988–1991. Ministerio de Educación y Ciencia, Secretaría de Estado de Universidades e Investigación, Madrid.Google Scholar
  17. Cooper, W. W., Seiford, L. M., & Tone, K. (2000). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-software. Boston: Kluwer Academic Publishers.Google Scholar
  18. David, P., Mowery, D., & Steinmueller, W. E. (1994). Analyzing the economic payoffs from basic research. In D. Mowery (Ed.), Science and technology policy in interdependent economies (pp. 57–78). Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  19. Dopfer, K., Foster, J., & Potts, J. (2004). Micro-meso-macro. Journal of Evolutionary Economics, 14, 263–279.CrossRefGoogle Scholar
  20. Edquist, C., & Hommen, L. (2008). Comparing national systems of innovation in Asia and Europe: Theory and comparative framework. In C. Edquist & L. Hommen (Eds.), Small country innovation systems: Globalisation, change and policy in Asia and Europe (pp. 1–28). Cheltenham: Edward Elgar.Google Scholar
  21. Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84, 66–83.Google Scholar
  22. Farrell, M. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, Series A, General, 120(3), 253–281.CrossRefGoogle Scholar
  23. Førsund, F. R. (1993). Productivity growth in Norwegian ferries. In H. O. Fried, C. A. K. Lovell, & S. S. Schmidt (Eds.), The measurement of productive efficiency: Techniques and applications (pp. 352–373). New York: Oxford University Press.Google Scholar
  24. Førsund, F. R. (1997). The Malmquist productivity index, TFP and scale. University of Oslo, Oslo: Working Paper, Department of Economics and Business Administration.Google Scholar
  25. Freeman, C. (1987). Technology policy and economic performance: Lessons from Japan. London: Printer Publishers.Google Scholar
  26. García-Martínez, M., & Briz, J. (2000). Innovation in the Spanish food & drink industry. International Food and Agribusiness Management Review, 3, 155–176.CrossRefGoogle Scholar
  27. Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage Publications.Google Scholar
  28. Grammatikopoulos, V., Kousteiios, A., Tsigilis, N., & Theodorakis, Y. (2004). Applying dynamic evaluation approach in education. Studies in Educational Evaluation, 30, 255–263.CrossRefGoogle Scholar
  29. Grifell-Tatjé, E., & Lovell, C. A. K. (1999). A generalized Malmquist productivity index. Top, 7(1), 81–101.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Grimpe, C., & Sofka, W. (2007). Search patterns and absorptive capacity: A comparison of low- and high-technology firms from thirteen European countries. Discussion paper no. 07-062. Centre for European Economic Research (ZEW), Mannheim, Germany.Google Scholar
  31. Guan, J., & Wang, J. (2004). Evaluation and interpretation of knowledge production efficiency. Scientometrics, 59(1), 131–155.CrossRefGoogle Scholar
  32. Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. H. M. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74, 413–432.CrossRefGoogle Scholar
  33. Jiménez-Sáez, F. (2005). Una Evaluación del Programa Nacional de Tecnología de Alimentos: análisis de la articulación fomentada sobre el Sistema Alimentario de Innovación en España. PhD dissertation, Servicio de Publicaciones de la Universidad Politécnica de Valencia, Valencia.Google Scholar
  34. Jiménez-Sáez, F., Zabala-Iturriagagoitia, J. M., Zofío, J. L., & Castro-Martínez, E. (2011). Evaluating research efficiency within National R&D Programmes. Research Policy, 40, 230–241.CrossRefGoogle Scholar
  35. Kao, C. (2008). Efficiency analysis of university departments: An empirical study. OMEGA, 36, 653–664.CrossRefGoogle Scholar
  36. Kuhlmann, S. (2003). Evaluation of research and innovation policies: A discussion of trends with examples from Germany. International Journal of Technology Management, 26, 131–149.CrossRefGoogle Scholar
  37. Laitinen, E. K. (2002). A dynamic performance measurement system: Evidence from small Finnish technology companies. Scandinavian Journal of Management, 18, 65–99.CrossRefGoogle Scholar
  38. Laranja, M., Uyarra, E., & Flanagan, K. (2008). Policies for science, technology and innovation: Translating rationales into regional policies in a multi-level setting. Research Policy, 37(5), 823–835.CrossRefGoogle Scholar
  39. Lee, T.-L., & von Tunzelman, N. (2005). A dynamic analytic approach to national innovation systems: The IC industry in Taiwan. Research Policy, 34, 425–440.CrossRefGoogle Scholar
  40. Lipsey, R., & Carlaw, K. (1998). A structuralist assessment of technology policies: Taking Schumpeter seriously on policy. Ottawa: Industry Canada Research Publications Program.Google Scholar
  41. Lipsey, R., Carlaw, K., & Bekar, C. (2005). Economic transformations: General purpose technologies and long term economic growth. Oxford: Oxford University Press.Google Scholar
  42. Lundvall, B. Å. (1992). National systems of innovation: Toward a theory of innovation and interactive learning. London: Printer Publishers.Google Scholar
  43. Lundvall, B. Å., Johnson, B., Andersen, E. S., & Dalum, B. (2002). National systems of production, innovation and competence building. Research Policy, 31, 213–231.CrossRefGoogle Scholar
  44. Markard, J., & Truffer, B. (2008). Actor-oriented analysis of innovation systems: Exploring micro-meso level linkages in the case of stationary fuel cells. Technology Analysis & Strategic Management, 20, 443–464.CrossRefGoogle Scholar
  45. Metcalfe, J. S. (2002). Equilibrium and evolutionary foundations of competition and technology policy: New perspectives on the division of labour and the innovation process. CRIC Working Papers series, University of Manchester.Google Scholar
  46. Miettinen, R. (1999). The riddle of things. Activity theory and actor network theory as approaches of studying innovations. Mind, Culture and Activity, 6, 170–195.CrossRefGoogle Scholar
  47. Molas-Gallart, J., & Davies, A. (2006). Toward theory-led evaluation: The experience of European science, technology, and innovation policies. American Journal of Evaluation, 27, 64–82.CrossRefGoogle Scholar
  48. Mytelka, L. K., & Smith, K. (2002). Policy learning and innovation theory: An interactive and co-evolving process. Research Policy, 31, 1467–1479.CrossRefGoogle Scholar
  49. Olazarán, M., Lavía, C., & Otero, B. (2004). ¿Hacia una segunda transición en la ciencia? Política científica y grupos de investigación. Revista Española de Sociología, 4, 143–172.Google Scholar
  50. Potts, J. (2007). The innovation system & economic evolution. Productivity commission submission, public support for science & innovation, productivity commission, Camberra.Google Scholar
  51. Ray, S., & Desli, E. (1997). Productivity growth, technical progress, and efficiency change in industrialized countries: Comment. American Economic Review, 87(5), 1033–1039.Google Scholar
  52. Rip, A., & Nederhof, A. J. (1986). Between dirigism and laissez-faire: Effects of implementing the science policy priority for biotechnology in the Netherlands. Research Policy, 15, 253–268.CrossRefGoogle Scholar
  53. Schmidt, E. K., Graversen, E. K., & Langberg, K. (2003). Innovation and dynamics in public research environments in Denmark: A research-policy perspective. Science and Public Policy, 30, 107–116.CrossRefGoogle Scholar
  54. Schmoch, U., & Schubert, T. (2009). Sustainability of incentives for excellent research—The German case. Scientometrics, 81(1), 195–218.CrossRefGoogle Scholar
  55. Shephard, R. (1970). Theory of cost and production functions. New Jersey: Princeton University Press.zbMATHGoogle Scholar
  56. Simar, L., & Wilson, P. W. (1998). Productivity growth in industrialized countries. Discussion paper 9810, Universite Catholique de Louvain, Belgium.Google Scholar
  57. Van Raan, A. F. J. (2000). R&D evaluation at the beginning of the new century. Research Evaluation, 8, 81–86.CrossRefGoogle Scholar
  58. Zofio, J. L. (2007). Malmquist productivity index decompositions: A unifying framework. Applied Economics, 39, 2371–2387.CrossRefGoogle Scholar
  59. Zofio, J. L., & Lovell, C. A. K. (1998). Yet another Malmquist productivity index decomposition. Working paper, Department of Economics, University of Georgia, Athens, GA 30602, USA.Google Scholar
  60. Zofio, J. L., & Lovell, C. A. K. (2001). Graph efficiency and productivity measures: An application to US agriculture. Applied Economics, 33(10), 1433–1442.CrossRefGoogle Scholar
  61. Zofio, J. L., & Prieto, A. M. (2006). Return to dollar, generalized distance function and the Fisher productivity index. Spanish Economic Review, 8, 113–138.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Fernando Jiménez-Sáez
    • 1
  • Jon Mikel Zabala-Iturriagagoitia
    • 2
  • Jose Luis Zofío
    • 3
  1. 1.INGENIO (CSIC-UPV)Universidad Politécnica de ValenciaValenciaSpain
  2. 2.CIRCLELund UniversityLundSweden
  3. 3.Departamento de Análisis Económico: Teoría Económica e Historia EconómicaUniversidad Autónoma de MadridCantoblanco, MadridSpain

Personalised recommendations