, Volume 93, Issue 2, pp 439–458 | Cite as

Globalization and de-globalization in nanotechnology research: the role of China

  • Aashish Mehta
  • Patrick Herron
  • Yasuyuki Motoyama
  • Richard Appelbaum
  • Timothy Lenoir


The share of nanotechnology publications involving authors from more than one country more than doubled in the 1990s, but then fell again until 2004, before recovering somewhat during the latter years of the decade. Meanwhile, the share of nanotechnology papers involving at least one Chinese author increased substantially over the last two decades. Papers involving Chinese authors are far less likely to be internationally co-authored than papers involving authors from other countries. Nonetheless, this appears to be changing as Chinese nanotechnology research becomes more advanced. An arithmetic decomposition confirms that China’s growing share of such research accounts, in large part, for the observed stagnation of international collaboration. Thus two aspects of the globalization of science can work in opposing directions: diffusion to initially less scientifically advanced countries can depress international collaboration rates, while at the same time scientific advances in such countries can reverse this trend. We find that the growth of China’s scientific community explains some, but not all of the dynamics of China’s international collaboration rate. We therefore provide an institutional account of these dynamics, drawing on Stichweh’s [Social Science information 35(2):327–340, 1996] original paper on international scientific collaboration, which, in examining the interrelated development of national and international scientific networks, predicts a transitional phase during which science becomes a more national enterprise, followed by a phase marked by accelerating international collaboration. Validating the application of this approach, we show that Stichweh’s predictions, based on European scientific communities in the 18th and 19th centuries, seem to apply to the Chinese scientific community in the 21st century.


International collaboration Diffusion Nanotechnology China Indigenous innovation 

JEL Classifications

O33 O38 O31 



The authors are indebted to Cong Cao for his excellent comments on an early draft of this paper, and to Quinn McCreight and Aisa Villanueva for superb research assistance. All errors are our own. This material is based upon work supported by the National Science Foundation under Grant No. SES 0531184. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. This study was conducted under the auspices of the University of California at Santa Barbara Center for Nanotechnology in Society (


  1. Aksnes, D. W. (2003). Characteristics of highly cited papers. Research Evaluation, 12(3), 159–170. doi: 10.3152/147154403781776645.CrossRefGoogle Scholar
  2. Aksnes, D. W. (2006). Citation rates and perceptions of scientific contribution. Journal of the American Society for Information Science and Technology, 57(2), 169–185. doi: 10.1002/asi.20262.CrossRefGoogle Scholar
  3. Appelbaum, R. P., & Parker, R. A. (2008). China’s bid to become a global nanotech leader: advancing nanotechnology through state-led programs and international collaborations. Science & Public Policy (SPP), 35(5), 319–334. doi: 10.3152/030234208x319366.CrossRefGoogle Scholar
  4. Appelbaum, R. P., & Parker, R. A. ( 2012a). China’s move to high-tech innovation: some regional policy implications. In C. Dent & J. Dosch (Eds.), The Asia-pacific regionalism and the global system. Cheltenham: Edward Elgar.Google Scholar
  5. Appelbaum, R. P., & Parker, R. A. (2012b). The Chinese century? Some policy implications of China’s move to high-tech innovation. In B. Harthorn & J. Mohr (Eds.), The social life of nanotechnology. New York: Routledge.Google Scholar
  6. Bai, C. (2005). Ascent of nanoscience in China. Science, 309(5731), 61–63. doi: 10.1126/science.1115172.CrossRefGoogle Scholar
  7. Braun, T., Zsindely, S., Dióspatonyi, I., & Zádor, E. (2007). Gatekeeping patterns in nano-titled journals. Scientometrics, 70(3), 651–667. doi: 10.1007/s11192-007-0306-2.CrossRefGoogle Scholar
  8. Breznitz, D., & Murphree, M. (2011). Run of the red queen: Government, innovation, globalization and economic growth in China. New Haven: Yale University Press.Google Scholar
  9. Cabinet Office of the Japanese Government. (2000). Second basic plan for science and technology (2001–2005).Google Scholar
  10. Chenery, H., Robinson, S., & Syrquin, M. (1986). Industrialization and economic growth. Oxford: Oxford University Press.Google Scholar
  11. Dang, Y., Zhang, Y., Fan, L., Chen, H., & Roco, M. C. (2010). Trends in worldwide nanotechnology patent applications: 1991 to 2008. Journal of Nanoparticle Research, 12(3), 687–706.CrossRefGoogle Scholar
  12. Defazio, D., Lockett, A., & Wright, M. (2009). Funding incentives, collaborative dynamics and scientific productivity: Evidence from the EU framework program. Research Policy, 38(2), 293–305.CrossRefGoogle Scholar
  13. Glanzel, W. (2001). National characteristics in international scientific co-authorship relations. Scientometrics, 51(1), 69–115.MathSciNetCrossRefGoogle Scholar
  14. Glanzel, W., Meyer, M., du Plessis, B., Magerman, T., Schlemmer, B., Debackere, K., et al. (2003). Nanotechnology: Analysis of an emerging domain of scientific and technological endeavour. Leuven: Steunpunt O&O Statistieken.Google Scholar
  15. Huang, C., Notten, A., & Rasters, N. (2008). Nanotechnology publications and patents: a review of social science studies and search strategies (UNU-MERIT Working Paper Series).Google Scholar
  16. Kostoff, R. N. (1998). The use and misuse of citation analysis in research evaluation—Comments on theories of citation? Scientometrics, 43(1), 27–43.CrossRefGoogle Scholar
  17. Kostoff, R. N., Briggs, M. B., Rushenberg, R. L., Bowles, C. A., Icenhour, A. S., Nikodym, K. F., et al. (2007). Chinese science and technology—Structure and infrastructure. Technological Forecasting and Social Change, 74(9), 1539–1573. doi: 10.1016/j.techfore.2007.02.008.CrossRefGoogle Scholar
  18. Kostoff, R., Murday, J., Lau, C., & Tolles, W. (2006a). The seminal literature of nanotechnology research. J Nanopart Res(8), 193–213. doi: 10.1007/s11051-005-9034-9.
  19. Kostoff, R. N., Stump, J. A., Johnson, D., Murday, J. S., Lau, C. G. Y., & Tolles, W. M. (2006b). The structure and infrastructure of the global nanotechnology literature. Journal of Nanoparticle Research, 8(3–4), 301–321. doi: 10.1007/s11051-005-9035-8.CrossRefGoogle Scholar
  20. Lenoir, T., & Herron, P. (2009). Tracking the current rise of Chinese pharmaceutical bionanotechnology. Journal of Biomedical Discovery and Collaboration, 4(8).Google Scholar
  21. Leydesdorff, L., & Wagner, C. S. (2008). International collaboration in science and the formation of a core group. Journal of Informetrics, 2, 317–325.CrossRefGoogle Scholar
  22. Leydesdorff, L., & Zhou, P. (2007). Nanotechnology as a field of science: Its delineation in terms of journals and patents. Scientometrics, 70(3), 693–713. doi: 10.1007/s11192-007-0308-0.CrossRefGoogle Scholar
  23. Lin, M.-W., & Zhang, J. (2007). Language trends in nanoscience and technology: The case of Chinese-language publications. Scientometrics, 70(3), 555–564. doi: 10.1007/s11192-007-0302-6.CrossRefGoogle Scholar
  24. Liu, F., Simon, D. F., Sun, Y., & Cao, C. (2011). China’s innovation policies: Evolution, institutional structure, and trajectory. Research Policy, 4(8), 917–931.CrossRefGoogle Scholar
  25. McGregor, J. (2009). China’s drive for ‘indigenous innovation’: A web of industrial policies. Washington DC: U.S. Chamber of Commerce.Google Scholar
  26. Mogoutov, A., & Kahane, B. (2007). Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking. Research Policy, 36(6), 893–903. doi: 10.1016/j.respol.2007.02.005.CrossRefGoogle Scholar
  27. Noyons, E., Buter, R., van Raan, A., Schmoch, U., Heinze, T., Hinze, S., et al. (2003). Mapping excellence in science and technology across Europe (Part 2: Nanoscience and nanotechnology). Draft report of project EC-PPN CT-2002-0001 to the European Commission.Google Scholar
  28. NSB. (2010). Science and engineering indicators. Washington DC: National Science Board.Google Scholar
  29. NSB. (2012). Science and engineering indicators 2012 (pp. Chapter 3, Global S&E Workforce). Washington DC: National Science Board.Google Scholar
  30. OECD. (2008). Reviews of innovation policy: China. Paris: OECD Publications.CrossRefGoogle Scholar
  31. Onel, S., Zeid, A., & Kamarthi, S. (2011). The structure and analysis of nanotechnology co-author and citation networks. Scientometrics, 89(1), 119–138. doi: 10.1007/s11192-011-0434-6.CrossRefGoogle Scholar
  32. Porter, A., Youtie, J., & Shapira, P. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.CrossRefGoogle Scholar
  33. Pouris, A. (2007). Nanoscale research in South Africa: A mapping exercise based on scientometrics. Scientometrics, 70(3), 541–553. doi: 10.1007/s11192-007-0301-7.CrossRefGoogle Scholar
  34. Ren, S., & Rousseau, R. (2002). International visibility of Chinese scientific journals. Scientometrics, 53(3), 389–405. doi: 10.1023/a:1014877130166.CrossRefGoogle Scholar
  35. Shapira, P., & Wang, J. (2010). Follow the money. Nature, 468(7324), 627–628.CrossRefGoogle Scholar
  36. Simon, D. F., & Cao, C. (2009). China’s emerging technological edge: Assessing the role of high-end talent. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Stichweh, R. (1996). Science in the system of world society. Social Science Information, 35(2), 327–340.CrossRefGoogle Scholar
  38. Tang, L., & Shapira, P. (2011). Regional development and interregional collaboration in the growth of nanotechnology research in China. Scientometrics, 86(2), 299–315. doi: 10.1007/s11192-010-0274-9.CrossRefGoogle Scholar
  39. U.S.-China Economic and Security Review Commission (2010). Report to Congress. Washington, DC: U.S. Government Printing Office. Google Scholar
  40. Valkimadi, P. E., Karageorgopoulos, D. E., Vliagoftis, H., & Falagas, M. E. (2009). Increasing dominance of English in publications archived by PubMed. Scientometrics, 81(1), 219–223. doi: 10.1007/s11192-008-2139-z.CrossRefGoogle Scholar
  41. Wagner, C. S. (2008). The new invisible college: Science for development. Washington, DC: Brookings Institution Press.Google Scholar
  42. Wagner, C. S., & Leydesdorff, L. (2005a). Mapping global science using international co-authorship: A comparison of 1990 and 2000. International Journal of Technology and Globalisation, 1(2), 185–208.CrossRefGoogle Scholar
  43. Wagner, C. S., & Leydesdorff, L. (2005b). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34, 1608–1618.CrossRefGoogle Scholar
  44. Youtie, J., Shapira, P., & Porter, A. L. (2008). Nanotechnology publications and citations by leading countries and blocs. Journal of Nanoparticle Research, 10(6), 981–986. doi: 10.1007/s11051-008-9360-9.CrossRefGoogle Scholar
  45. Zitt, M., & Bassecoulard, E. (2006). Delineating complex scientific fields by an hybrid lexical-citation method: An application to nanosciences. Information Processing Management, 42(6), 1513–1531. doi: 10.1016/j.ipm.2006.03.016.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Aashish Mehta
    • 1
  • Patrick Herron
    • 2
  • Yasuyuki Motoyama
    • 3
  • Richard Appelbaum
    • 4
  • Timothy Lenoir
    • 2
  1. 1.Global and International Studies Program/Center for Nanotechnology and SocietyUniversity of California-Santa BarbaraSanta BarbaraUSA
  2. 2.Jenkins CollaboratoryDuke UniversityDurhamUSA
  3. 3.Division of Research and PolicyEwing Marion Kauffman FoundationKansas CityUSA
  4. 4.Department of Sociology/Global and International Studies Program/Center for Nanotechnology and SocietyUniversity of California-Santa BarbaraSanta BarbaraUSA

Personalised recommendations