, Volume 90, Issue 2, pp 499–513 | Cite as

Overlaying communities and topics: an analysis on publication networks

  • Erjia Yan
  • Ying Ding
  • Elin K. Jacob


Two layers of enriched information are constructed for communities: a paper-to-paper network based on shared author relations and a paper-to-paper network based on shared word relations. k-means and VOSviewer, a modularity-based clustering technique, are used to identify publication clusters in the two networks. Results show that a few research topics such as webometrics, bibliometric laws, and language processing, form their own research community; while other research topics contain different research communities, which may be caused by physical distance.


Community Topic Detection Scholarly networks 



The authors would like to thank Ludo Waltman, Nees van Eck, and Ed Noyons for introducing VOSviewer and their comments to the idea of this paper.


  1. Allen, C. (2004). Life with alacrity: The Dunbar number as a limit to group sizes. Retrieved 19 April 2010 from
  2. Åström, F. (2010). The visibility of information science and library science research in bibliometric mapping of the LIS field. The Library Quarterly, 80(2), 143–159.CrossRefGoogle Scholar
  3. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1033.zbMATHGoogle Scholar
  4. Blei, D. M., & Lafferty, J. D. (2007). A corrected model of science. Annals of Applied Statistics, 1, 17–35.Google Scholar
  5. Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large network. Physical Review E, 70, 066111.CrossRefGoogle Scholar
  6. Ding, Y. (2011). Community detection: Topological vs. topical. Journal of Informetrics. doi: 10.1016/j.joi.2011.02.006.
  7. Donetti, L., & Munoz, M. A. (2004). Detecting network communities: A new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment, 2004, P10012.CrossRefGoogle Scholar
  8. Dunbar, R. (1998). Grooming, gossip, and the evolution of language. Boston: Harvard University Press.Google Scholar
  9. Farkas, I., Ábel, D., Palla, G., & Vicsek, T. (2007). Weighted network modules. New Journal of Physics, 9(6), 180–209.CrossRefGoogle Scholar
  10. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174.CrossRefMathSciNetGoogle Scholar
  11. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826.CrossRefzbMATHMathSciNetGoogle Scholar
  12. Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 50–57), 15–19 Aug 1999, Berkeley, CA.Google Scholar
  13. Leskovec, J., Lang, K. J., Dasgupta, A., & Mahoney, M. W. (2008). Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Retrieved 21 Mar 2010 from
  14. Li, D., He, B., Ding, Y., Tang, J., Sugimoto, C., Qin, Z., et al. (2010). Community-based topic modeling for social tagging. In The 19th ACM International Conference on Information and Knowledge Management (CIKM2010) (pp. 1565–1568), 26–30 Oct 2010, Toronto, Canada.Google Scholar
  15. Morris, S. A., & Van der Veer Martens, B. (2008). Modeling and mapping of research specialties. Annual Review of Information Science and Technology, 42(1), 213–295.CrossRefGoogle Scholar
  16. Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 404–409.CrossRefzbMATHMathSciNetGoogle Scholar
  17. Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582.CrossRefGoogle Scholar
  18. Newman, M., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113.CrossRefGoogle Scholar
  19. Nisonger, T. E., & Davis, C. H. (2005). The perception of library and information science journals by LIS education deans and ARL library directors: A replication of the Kohl-Davis study. College & Research Libraries, 66, 341–377.Google Scholar
  20. Persson, O. (1994). The Intellectual base and research fronts of JASIS 1986–1990. Journal of the American Society for Information Science, 45(1), 31–38.CrossRefGoogle Scholar
  21. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2658–2663.CrossRefGoogle Scholar
  22. Richardson, T., Mucha, P. J., & Porter, M. A. (2009). Spectral tripartitioning of networks. Physical Review E, 80, 036111.CrossRefGoogle Scholar
  23. Steyvers, M., Smyth, P., Rosen-Zvi, M., & Griffiths, T. (2004). Probabilistic author-topic models for information discovery. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 306–315). New York: ACM Press.Google Scholar
  24. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). ArnetMiner: Extraction and mining of academic social networks. In Proceedings of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 990–998), Las Vegas.Google Scholar
  25. Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.CrossRefGoogle Scholar
  26. Waltman, L., Yan, E., & van Eck, N. J. (2011). A recursive field-normalized bibliometric performance indicator: An application to the field of library and information science. Scientometrics, 89(1), 301–314.Google Scholar
  27. White, H. D. (2003). Pathfinder networks and author cocitation analysis: A remapping of paradigmatic information scientists. Journal of the American Society for Information Science, 54(5), 423–434.CrossRefGoogle Scholar
  28. White, H. D., & Mccain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355.Google Scholar
  29. Yan, E., Ding, Y., & Zhu, Q. (2010). Mapping library and information science in China: A coauthorship network analysis. Scientometrics, 83(1), 115–131.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.School of Library and Information ScienceIndiana UniversityBloomingtonUSA

Personalised recommendations