Advertisement

Scientometrics

, Volume 90, Issue 2, pp 607–616 | Cite as

Peer review and over-competitive research funding fostering mainstream opinion to monopoly. Part II

  • Xuan Zhen Liu
  • Hui FangEmail author
Article

Abstract

In our previous work (Scientometrics 87:293–301, 2011), a numerical model of over-competitive research funding in “peer-group-assessed-grant-based-funding-system” was proposed and the process was firstly investigated quantitatively. The simulation results show that the mainstream of a very complicated research topic could obtain monopoly supremacy with only the aid of the mechanism the model described. Here, the numbers of publications of cosmology back to 1950 are utilized to empirically test this positive feedback mechanism. The development of three main theories of cosmology, Big Bang, Steady State and Plasma Universe, are revisited. The later two, which are non-mainstream opinions, both state in their peer reviewed papers, that their theories fit the phenomena that support the standard theory. The ratios of publications of the orthodox theory, Big Bang, approximately satisfy the numeric calculating results of our model. The reason for the discrepancy between the model and actual situation is discussed. A further question about the controversy is presented.

Keywords

Peer review Research funding Publications Excessive competition Mainstream Cosmology 

MSC

60H99 

JEL

C15 C32 

Notes

Acknowledgements

We are grateful to Wendy Powell in Valleyford, Washington USA for editing English of our manuscript. The authors thank the anonymous reviewers for useful suggestions improving this contribution. This work was supported by the National Basic Research Program of China under Grant 2011CBA00107.

References

  1. Alberts, B., Hanson, B., & Kelner, K. L. (2008). Reviewing peer review. Science, 321, 15.CrossRefGoogle Scholar
  2. Alfvén, H. (1981). Cosmic plasma. Dordrecht: Reidel.CrossRefGoogle Scholar
  3. Alfvén, H. (1990). Cosmology in the plasma universe: An introductory exposition. IEEE Transactions on Plasma Science, 18, 5–10.CrossRefGoogle Scholar
  4. Alpher, R. A., & Herman, R. C. (1949). Remarks on the evolution of the expanding universe. Physical Review, 75, 1089–1095.CrossRefzbMATHGoogle Scholar
  5. Alpher, R. A., Bethe, H., & Gamow, G. (1948). The origin of chemical elements. Physical Review, 73, 803–804.CrossRefGoogle Scholar
  6. Berezin, A. A. (2001). Discouragement of innovation by overcompetitive research funding. Interdisciplinary Science Reviews, 26, 97–102.Google Scholar
  7. Bondi, H., & Gold, T. (1948). The steady-state theory of the expanding universe. Monthly Notices of the Royal Astronomical Society, 108, 52–270.Google Scholar
  8. Dicke, R. H., Peebles, P. J. E., Roll, P. G., & Wilkinson, D. T. (1965). Cosmic black-body radiation. Astrophysical Journal, 142(1), 414–419.CrossRefGoogle Scholar
  9. Einstein, A. (1917). Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie [Cosmological considerations on the general theory of relativity]. Sitzungsberichte der Königlich Preuβischen Akademie der Wissenschaften, Part, 1, 142–152.Google Scholar
  10. Fang, H. (2011). Peer review and over-competitive research funding fostering mainstream opinion to monopoly. Scientometrics, 87, 293–301.CrossRefGoogle Scholar
  11. Friedmann, A. (1922). Über die Krümmung des Raumes [On the curvature of space]. Zeitschrift für Pysik, 10, 377–386.CrossRefGoogle Scholar
  12. Friedmann, A. (1924). Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes [On the possibility of a world with constant negative curvature]. Zeitschrift für Pysik, 21, 326–332.CrossRefMathSciNetGoogle Scholar
  13. Grivell, L. (2006). Through a glass darkly – the present and the future of editorial peer review. EMBO reports, 7, 567–570.CrossRefGoogle Scholar
  14. Gura, T. (2002). Peer review, unmasked. Nature, 416, 258–260.CrossRefGoogle Scholar
  15. Horrobin, D. F. (1996). Peer review of grant applications: a harbinger of mediocrity in clinical research. Lancet, 348, 1293–1295.CrossRefGoogle Scholar
  16. Hoyle, F. (1948). A new model for the expanding universe. Monthly Notices of the Royal Astronomical Society, 108, 372–382.zbMATHGoogle Scholar
  17. Hoyle, F., Burbidge, G., & Narlikar, J. V. (1993). A quasi-steady-state cosmological model with creation of matter. Astrophysical Journal, 410, 437–457.CrossRefGoogle Scholar
  18. Hubble, E., & Humason, M. (1931). The velocity-distance relation of extra-galactic nebulae. Astrophysical Journal, 74, 43–80.CrossRefGoogle Scholar
  19. Jayasinghe, U. W., Marsh, H. W., & Bond, N. (2001). Peer review in the funding of research in higher education: The Australian experience. Educational Evaluation and Policy Analysis, 23, 343–364.CrossRefGoogle Scholar
  20. Kanipe, J. (1995). The pillars of cosmology: A short history and assessment. Astrophysics and Space Science, 227, 109–118.CrossRefGoogle Scholar
  21. Kantha, S. S. (1996). Scientific productivity of Einstein, Freud and Landsteiner. Medical Hypotheses, 46, 467–470.CrossRefGoogle Scholar
  22. Klein, O. (1966). Instead of cosmology. Nature, 211, 1337–1341.CrossRefGoogle Scholar
  23. Klein, O. (1971). Arguments concerning relativity and cosmology. Science, 171, 339–345.CrossRefGoogle Scholar
  24. Kragh, H. (1996). Cosmology and controversy: The historical development of two theories of the universe. Princeton: Princeton University Press.Google Scholar
  25. Lemaitre, G. (1927). Un univers homogene de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nebuleuses extra-galactiques [A homogeneous universe of constant mass and increasing radius]. Annales Sociente Sciences Bruxelle, A47, 49–59.Google Scholar
  26. Lerner, E. (2003). Two world systems revisited: A comparison of plasma cosmology and the big bang. IEEE Transactions on Plasma Science, 31, 1268–1275.CrossRefGoogle Scholar
  27. Lerner, E. (2004). Bucking the big bang. New Scientist, 2448, 20.Google Scholar
  28. Lundmark, K. (1924). The determination of the curvature of space-time in de Sitter’s world. Monthly Notices of the Royal Astronomical Society, 84, 747–770.Google Scholar
  29. Marx, W., & Bornmann, L. (2010). How accurately does Thomas Kuhn’s model of paradigm change describe the transition from the static view of the universe to the big bang theory in cosmology? Scientometrics, 84, 441–464.CrossRefGoogle Scholar
  30. Narlikar, J. V., Burbidge, G., & Vishwakarma, R. G. (2007). Cosmology and cosmogony in a cyclic universe. Journal of Astrophysics and Astronomy, 28, 67–99.CrossRefGoogle Scholar
  31. Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080MC/S. Astrophysical Journal, 142(1), 419.CrossRefGoogle Scholar
  32. Peratt, A. L. (1996). Electric space: Evolution of the plasma universe. Astrophysics and Space Science, 244, 89–103.CrossRefzbMATHGoogle Scholar
  33. Price, D. J. de Solla (1986). Little science, big science … and beyond. New York: Columbia University Press.Google Scholar
  34. Ratra, B., & Vogeley, M. S. (2008). The beginning and evolution of the universe. Publications of the Astronomical Society of the Pacific, 120, 235–265.CrossRefGoogle Scholar
  35. Rocha, B. (2001). Trouble with peer review. Nature Immunology, 2, 277.CrossRefGoogle Scholar
  36. Ryle, M., & Clarke, R. W. (1961). An examination of the steady-state model in the light of some recent observations of radio sources. Monthly Notices of the Royal Astronomical Society, 122, 349–362.Google Scholar
  37. Sarmah, B. P., Banerjee, S. K., Dhurandhar, S. V., & Narlikar, J. V. (2006). On searches for gravitational waves from mini-creation events by laser interferometric detectors. Monthly Notices of the Royal Astronomical Society, 369, 89–96.CrossRefGoogle Scholar
  38. Slipher, V. M. (1912). The radial velocity of the Andromeda Nebula. Lowell Observatory Bulletin, 58, 56–57.Google Scholar
  39. Slipher, V. M. (1917). Nebula. Proceedings of the American Philosophical Society, 56, 403–409.Google Scholar
  40. Smith, R. (1997). Peer review: Reform or revolution? British Medical Journal, 315, 759–760.CrossRefGoogle Scholar
  41. Spier, R. E. (2002a). The history of the peer-review process. Trends in Biotechnology, 20, 357–358.CrossRefGoogle Scholar
  42. Spier, R. E. (2002b). Peer review and innovation. Science and Engineering Ethics, 8, 99–108.CrossRefGoogle Scholar
  43. Spier, R. E., & Bird, S. J. (2003). On the management of funding of research in science and engineering. Science and Engineering Ethics, 9, 298–300.CrossRefGoogle Scholar
  44. van der Eerden, C., & Saelens, F. H. (1991). The use of science and technology indicators in strategic planning. Long Range Planning, 24, 18–25.CrossRefGoogle Scholar
  45. Vishwakarma, R. G., & Narlikar, J. V. (2007). Modeling repulsive gravity with creation. Journal of Astrophysics and Astronomy, 28, 17–27.CrossRefGoogle Scholar
  46. Way, M., & Nussbaumer, H. (2011). Lemaitre’s Hubble relationship. Physics Today, 64, 8.CrossRefGoogle Scholar
  47. Wirtz, C. (1924). De Sitters Kosmologie und die Radiabewegungen der Spiralnebel [De Sitter’s cosmology and the radial motions of the spiral nebulae]. Astronomische Nachrichten, 222, 22–26.Google Scholar
  48. Zucker, R. S. (2008). A peer review how-to. Science, 319, 32.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Library of Nanjing Medical UniversityNanjingChina
  2. 2.School of Electronic Science and Engineering, State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjingChina

Personalised recommendations