Advertisement

Scientometrics

, 89:479 | Cite as

Agent-based computing from multi-agent systems to agent-based models: a visual survey

  • Muaz Niazi
  • Amir Hussain
Article

Abstract

Agent-based computing is a diverse research domain concerned with the building of intelligent software based on the concept of “agents”. In this paper, we use Scientometric analysis to analyze all sub-domains of agent-based computing. Our data consists of 1,064 journal articles indexed in the ISI web of knowledge published during a 20 year period: 1990–2010. These were retrieved using a topic search with various keywords commonly used in sub-domains of agent-based computing. In our proposed approach, we have employed a combination of two applications for analysis, namely Network Workbench and CiteSpace—wherein Network Workbench allowed for the analysis of complex network aspects of the domain, detailed visualization-based analysis of the bibliographic data was performed using CiteSpace. Our results include the identification of the largest cluster based on keywords, the timeline of publication of index terms, the core journals and key subject categories. We also identify the core authors, top countries of origin of the manuscripts along with core research institutes. Finally, our results have interestingly revealed the strong presence of agent-based computing in a number of non-computing related scientific domains including Life Sciences, Ecological Sciences and Social Sciences.

Keywords

Scientometrics Visualization Agent-based modeling Multiagent systems Individual-based modeling CiteSpace 

References

  1. Abdallah, S., & Lesser, V. (2007). Multiagent reinforcement learning and self-organization in a network of agents. In Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems (AAMAS '07) (Article 39, 8 pp). New York: ACM. doi: 10.1145/1329125.1329172
  2. Adar, E. (2006). Guess: A language and interface for graph exploration. New York: ACM.Google Scholar
  3. Aoyama, H. (2010). Econophysics and companies: Statistical life and death in complex business networks. New York: Cambridge University Press.CrossRefGoogle Scholar
  4. Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and colloboration. Princeton: Princeton University Press.Google Scholar
  5. Bankes, S. C. (2002). Agent-based modeling: A revolution? Proceedings of the National Academy of Science, 99, 7199–7200.CrossRefGoogle Scholar
  6. Barabasi, A. (2005). The origin of bursts and heavy tails in human dynamics. Nature, 435(7039), 207–211.CrossRefGoogle Scholar
  7. Barabási, A., & Gelman, A. (2010). Bursts: The hidden pattern behind everything we do. Physics Today, 63, 46.CrossRefGoogle Scholar
  8. Barabási, A., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and Its Applications, 311(3–4), 590–614.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Bellifemine, F., Poggi, A., & Rimassa, G. (2001). Developing multi-agent systems with JADE. In Intelligent Agents VII: Agent theories architectures and languages (Vol. 1986, pp. 42–47). Berlin: Springer.Google Scholar
  10. Börner, K., Penumarthy, S., Meiss, M., & Ke, W. (2006). Mapping the diffusion of scholarly knowledge among major US research institutions. Scientometrics, 68(3), 415–426.CrossRefGoogle Scholar
  11. Card, S., Mackinlay, J., & Shneiderman, B. (1999). Readings in information visualization: Using vision to think. San Francisco: Morgan Kaufmann.Google Scholar
  12. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.CrossRefGoogle Scholar
  13. Chen, C., Panjwani, G., Proctor, J., Allendoerfer, K., Aluker, S., Sturtz, D., Vukovic, M., & Kuljis, J. (2006). Visualizing the evolution of HCI. In T. McEwan, J. Gulliksen & D. Benyon (Eds.), People and Computers XIXThe Bigger Picture (pp. 233–250). London: Springer.CrossRefGoogle Scholar
  14. Chen, C., Paul, R., & O’Keefe, B. (2001). Fitting the jigsaw of citation: Information visualization in domain analysis. Journal of the American Society for Information Science and Technology, 52(4), 315–330.CrossRefGoogle Scholar
  15. Chunjuan, L., Chunyan, Z., & Aiyun, L. (2010). Patent strategy in Chinese universities: a comparative perspective. Scientometrics, 84(1), 53–63.CrossRefGoogle Scholar
  16. Dydenko, I., Durning, B., Jamal, F., Cachard, C., & Friboulet, D. (2005). An autoregressive model-based method for contrast agent detection in ultrasound radiofrequency images. Ultrasonic Imaging, 27(1), 37–53.Google Scholar
  17. Epstein, J., & Axtell, R. (1996). Growing artificial societies. Cambridge, MA: MIT Press.Google Scholar
  18. Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From National Systems and. Research Policy, 29(2), 109–123.CrossRefGoogle Scholar
  19. Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the social scientist (2nd ed.). New York: McGraw Hill Education.Google Scholar
  20. Gonzalez, P. P., Cardenas, M., Camacho, D., Franyuti, A., Rosas, O., & Lagunez-Otero, J. (2003). Cellulat: An agent-based intracellular signalling model. Biosystems, 68(2–3), 171–185.CrossRefGoogle Scholar
  21. Griffith, B., Small, H., Stonehill, J., & Dey, S. (1974). The structure of scientific literatures II: Toward a macro-and microstructure for science. Science studies, 4(4), 339–365.CrossRefGoogle Scholar
  22. Hou, H., Kretschmer, H., & Liu, Z. (2008). The structure of scientific collaboration networks in Scientometrics. Scientometrics, 75(2), 189–202. doi: 10.1007/s11192-007-1771-3.CrossRefGoogle Scholar
  23. Jennings, N. (1999). Agent-based computing: Promise and perils. Paper presented at the 16th international joint conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden.Google Scholar
  24. Jennings, N. R. (2000) On agent-based software engineering. Artificial Intelligence, 117(2), 277–296.zbMATHCrossRefGoogle Scholar
  25. LaRowe, G., Ambre, S., Burgoon, J., Ke, W., & Börner, K. (2009). The Scholarly Database and its utility for scientometrics research. Scientometrics, 79(2), 219–234.CrossRefGoogle Scholar
  26. Leydesdorff, L. (2001). The challenge of scientometrics: The development, measurement, and self-organization of scientific communications. Parkland, USA: Universal-Publishers.Google Scholar
  27. Macal, C. M., & North, M. J. (2007). Agent-based modeling and simulation: Desktop ABMS. Paper presented at the Proceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come, Washington DC.Google Scholar
  28. Mukhopadhyay, R., Costes, S. V., Bazarov, A. V., Hines, W. C., Barcellos-Hoff, M. H., & Yaswen, P. (2010). Promotion of variant human mammary epithelial cell outgrowth by ionizing radiation: An agent-based model supported by in vitro studies. Breast Cancer Research, 12(1), R11. doi: 10.1186/bcr2477.Google Scholar
  29. Niazi, M., & Hussain, A. (2009). Agent based tools for modeling and simulation of self-organization in peer-to-peer, ad-hoc and other complex networks. IEEE Communications Magazine, 47(3), 163–173.CrossRefGoogle Scholar
  30. Niazi, M., & Hussain, A. (2010). A novel agent-based simulation framework for Sensing in complex adaptive environments. IEEE Sensors Journal, 11(2). doi: 10.1109/JSEN.2010.2068044.
  31. Niazi, M., & Hussain, A. (2011a). Social network analysis of trends in the consumer electronics domain. Paper presented at the international conference on consumer electronics, Las Vegas, USA, 9–12 January, 2011.Google Scholar
  32. Niazi, M. A., & Hussain, A. (2011b). A novel agent-based simulation framework for sensing in complex adaptive environments. IEEE Sensors Journal, 11(2), 404–412.CrossRefGoogle Scholar
  33. Niazi, M. A., & Hussain, A. (2011c). Sensing emergence in complex systems. IEEE Sensors Journal. doi: 10.1109/JSEN.2011.2142303.
  34. Niazi, M., Siddique, Q., Hussain, A., & Kolberg, M. (2010). Verification and validation of an agent-based forest fire simulation model. Paper presented at the SCS spring simulation conference, Orlando, FL, USA, April 2010.Google Scholar
  35. Park, H., Hong, H., & Leydesdorff, L. (2005). A comparison of the knowledge-based innovation systems in the economies of South Korea and The Netherlands using Triple Helix indicators. Scientometrics, 65(1), 3–27.CrossRefGoogle Scholar
  36. Park, H., & Leydesdorff, L. (2008). Korean journals in the Science Citation Index: What do they reveal about the intellectual structure of S&T in Korea? Scientometrics, 75(3), 439–462.CrossRefGoogle Scholar
  37. Pouris, A., & Pouris, A. (2010). Scientometrics of a pandemic: HIV/AIDS research in South Africa and the World. Scientometrics, 86, 541–552. doi: 10.1007/s11192-010-0277-6.
  38. Pullen, M. (2000). The Network Workbench: Network simulation software for academic investigation of Internet concepts. Computer Networks, 32(3), 365–378.CrossRefGoogle Scholar
  39. Reuters, T. (2008). Web of science. Online factsheet Thomson Reuters, Philadelphia, Pennsylvania. Available from www.thomsonreuters.com/content/PDF/scientific/Web_of_Science_factsheet.pdf.
  40. Sandström, E., & Sandström, U. (2007). CiteSpace visualization of proximity clusters in dentistry research (pp. 25–28). Stockholm: Royal Institute of Technology.Google Scholar
  41. Sedgewick, R., & Schidlowsky, M. (2003). Algorithms in Java, Part 5: Graph algorithms. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.Google Scholar
  42. Siddiqa, A., Niazi, M. A., Mustafa, F., Bokhari, H., Hussain, A., Akram, N., et al. (2009). A new hybrid agent-based modeling & simulation decision support system for breast cancer data analysis. In Information and Communication Technologies, 2009. ICICT ‘09 international conference on, 1516 August 2009 (pp. 134–139).Google Scholar
  43. Sierra-Flores, M., Guzmán, M., Raga, A., & Pérez, I. (2009). The productivity of Mexican astronomers in the field of outflows from young stars. Scientometrics, 81(3), 765–777.CrossRefGoogle Scholar
  44. Small, H. (1973). Co citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269.CrossRefGoogle Scholar
  45. Small, H. (1993). Macro-level changes in the structure of co-citation clusters: 1983–1989. Scientometrics, 26(1), 5–20.MathSciNetCrossRefGoogle Scholar
  46. Small, H., & Griffith, B. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science Studies, 4, 17–40.CrossRefGoogle Scholar
  47. Snead, D., Barre, P., Bajpai, P. K., Taylor, A., Reynolds, D., Mehling, B., et al. (1995). The use of a zinc based bioceramic as an osteoconductive agent in the rat model. Biomedical Sciences Instrumentation, 31, 141–146.Google Scholar
  48. Sooryamoorthy, R. (2010). Scientific publications of engineers in South Africa, 1975–2005. Scientometrics, 1–16. doi: 10.1007/s11192-010-0288-3.
  49. Team, N. (2006). Network Workbench tool. Bloomington/Boston/Ann Arbor: Indiana University/Northeastern University/University of Michigan.Google Scholar
  50. Weiss, G. (Ed.). (1998). Multiagent systems: A modern approach to distributed artificial intelligence. Cambridge, MA: MIT Press.Google Scholar
  51. White, H. D., & Griffith, B. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163–171.CrossRefGoogle Scholar
  52. White, H., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355. doi: 10.1002/(sici)1097-4571(19980401)49:4<327:aid-asi4>3.0.co;2-4.Google Scholar
  53. Wooldridge, M. (1998). Agent-based computing. Interoperable Communication Networks, 1, 71–98.Google Scholar
  54. Wooldridge, M. (2009). An introduction to multiagent systems. New York: Wiley.Google Scholar
  55. Xiaofei, D. (2010). A study on simulation of forest fire spread based on a multi-agent model. Anhui Agricultural Science Bulletin. doi: CNKI:SUN:AHNB.0.2010-09-093.
  56. Zhao, R., & Wang, J. (2010). Visualizing the research on pervasive and ubiquitous computing. Scientometrics, 86(3), 593–612.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Department of BiosciencesCOMSATS Institute of ITIslamabadPakistan
  2. 2.Institute of Computing Science and Mathematics, School of Natural SciencesUniversity of StirlingStirlingScotland, UK

Personalised recommendations