, Volume 89, Issue 1, pp 421–435 | Cite as

Mixed-indicators model for identifying emerging research areas

  • Hanning GuoEmail author
  • Scott Weingart
  • Katy Börner


This study presents a mixed model that combines different indicators to describe and predict key structural and dynamic features of emerging research areas. Three indicators are combined: sudden increases in the frequency of specific words; the number and speed by which new authors are attracted to an emerging research area, and changes in the interdisciplinarity of cited references. The mixed model is applied to four emerging research areas: RNAi, Nano, h-Index, and Impact Factor research using papers published in the Proceedings of the National Academy of Sciences of the United States of America (1982–2009) and in Scientometrics (1978–2009). Results are compared in terms of strengths and temporal dynamics. Results show that the indicators are indicative of emerging areas and they exhibit interesting temporal correlations: new authors enter the area first, then the interdisciplinarity of paper references increases, then word bursts occur. All workflows are reported in a manner that supports replication and extension by others.


Burst detection Prediction Emerging trend Temporal dynamics Science of science (Sci2) tool 



We would like to thank Joseph Biberstine and Russell J. Duhon for developing custom queries and code and appreciate the expert comments from the three anonymous reviewers. This work is funded by the James S. McDonnell Foundation and the National Institutes of Health under awards R21DA024259 and U24RR029822.


  1. Adamson, I. (1992). Access and retrieval of information as coordinates of scientific development and achievement in Nigeria. Scientometrics, 23(1), 191–199.MathSciNetCrossRefGoogle Scholar
  2. Bettencourt, L., Kaiser, D., Kaur, J., Castillo-Chavez, C., & Wojick, D. (2008). Population modeling of the emergence and development of scientific fields. Scientometrics, 75(3), 495–518.CrossRefGoogle Scholar
  3. Boyack, K. W. (2004). Mapping knowledge domains: Characterizing PNAS. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl 1), 5192–5199.CrossRefGoogle Scholar
  4. Braun, T., Glänzel, W., & Schubert, A. (1987). One more version of the facts and figures on publication output and relative citation impact of 107 countries, 1978–1980. Scientometrics, 11(1), 9–15.CrossRefGoogle Scholar
  5. Braun, T., Glänzel, W., & Schubert, A. (1989a). Assessing assessments of British science: Some facts and figures to accept or decline. Scientometrics, 15(3), 165–170.CrossRefGoogle Scholar
  6. Braun, T., Glänzel, W., & Schubert, A. (1989b). The newest version of the facts and figures on publication output and relative citation impact: A collection of relational charts, 1981–1985. Scientometrics, 15(1–2), 13–20.CrossRefGoogle Scholar
  7. Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotechnology on the balance. Scientometrics, 38(2), 321–325.CrossRefGoogle Scholar
  8. Chen, C. (2006). Citespace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.CrossRefGoogle Scholar
  9. Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3(3), 191–209.CrossRefGoogle Scholar
  10. Chu, H. (1992). Communication between Chinese and non-Chinese scientists in the discovery of high-TC superconductors: II. The informal perspective. Scientometrics, 25(2), 253–277.CrossRefGoogle Scholar
  11. Garfield, E., & Small, H. (1989). Identifying the change frontiers of science. In M. Kranzberg, Y. Elkana, & Z. Tadmor (Eds.), Conference proceedings of innovation: At the crossroads between science and technology (pp. 51–65). Haifa, Israel: The S. Neaman Press.Google Scholar
  12. Goffman, W. (1966). Mathematical approach to the spread of scientific ideas: The history of mast cell research. Nature, 212(5061), 452–499.CrossRefGoogle Scholar
  13. Goffman, W. (1971). A mathematical method for analyzing the growth of a scientific discipline. Journal of Association for Computing Machinery, 18(2), 173–185.zbMATHGoogle Scholar
  14. Goffman, W., & Harmon, G. (1971). Mathematical approach to the prediction of scientific discovery. Nature, 229(5280), 103–104.CrossRefGoogle Scholar
  15. Goffman, W., & Newill, V. A. (1964). Generalization of epidemic theory: An application to the transmission of ideas. Nature, 204(4955), 225–228.CrossRefGoogle Scholar
  16. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the USA, 102(46), 16569–16572.CrossRefGoogle Scholar
  17. Kajikawa, Y., Yoshikawaa, J., Takedaa, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75(6), 771–782.CrossRefGoogle Scholar
  18. Kim, M.-J. (2001). A bibliometric analysis of physics publications in Korea, 1994–1998. Scientometrics, 50(3), 503–521.CrossRefGoogle Scholar
  19. Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455–476.CrossRefGoogle Scholar
  20. Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7(4), 373–397.MathSciNetCrossRefGoogle Scholar
  21. Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  22. Lee, W. H. (2008). How to identify emerging research fields using scientometrics: An example in the field of information security. Scientometrics, 76(3), 1588–2861.CrossRefGoogle Scholar
  23. Lewison, G. (1991). The scientific output of the EC’s less favoured regions. Scientometrics, 21(3), 383–402.CrossRefGoogle Scholar
  24. Leydesdorff, L., & Schank, T. (2008). Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments. Journal of the American Society for Information Science and Technology, 59(11), 1810–1818.CrossRefGoogle Scholar
  25. Lucio-Arias, D., & Leydesdorff, L. (2007). Knowledge emergence in scientific communication: From “Fullerenes” to “nanotubes”. Scientometrics, 70(3), 603–632.CrossRefGoogle Scholar
  26. Mane, K., & Börner, K. (2004). Mapping topics and topic bursts in PNAS. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 101(Suppl 1), 5287–5290.CrossRefGoogle Scholar
  27. Menard, H. W. (1971). Science: Growth and change. Cambridge, MA: Harvard Univ Press.Google Scholar
  28. Merton, R. K. (1968). The matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63.CrossRefGoogle Scholar
  29. Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.CrossRefGoogle Scholar
  30. Price, D. J. D. S. (1970). Citation measures of hard science, softscience, technology, and nonscience. In C. E. A. P. Nelson, D. (Ed.), Communication among scientists and engineers (pp. 3–12): Heath Lexington Books, Massachusetts.Google Scholar
  31. Rao, C. R. (1982). Diversity: Its measurement, decomposition, apportionment and analysis. Sankhy: The Indian Journal of Statistics, Series A, 44(1), 1–22.zbMATHGoogle Scholar
  32. Scharnhorst, A., & Garfield, E. (2010 in press). Tracing scientific influence. Dynamic of Socio-Economic System, 2(1).Google Scholar
  33. Sci2 Team. (2009a). Science of Science (Sci2) Tool: Indiana University and SciTech Strategies, Inc. Accessed 8 June 2010.
  34. Serenko, A., Bontis, N., Booker, L., Sadeddin, K., & Hardie, T. (2010). A scientometric analysis of knowledge management and intellectual capital academic literature (1994–2008). Journal of Knowledge Management, 14(1), 3–23.CrossRefGoogle Scholar
  35. Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 63(3), 595–610.CrossRefGoogle Scholar
  36. Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4(15), 707–719.CrossRefGoogle Scholar
  37. Takeda, Y., & Kajikawa, Y. (2009). Optics: A bibliometric approach to detect emerging research domains and intellectual bases. Scientometrics, 78(3), 543–558.CrossRefGoogle Scholar
  38. Thomson Reuters (2010). Web of science. Accessed 8 June 2010.
  39. Tsipouri, L. (1991). Effects of EC R&D policy on Greece: Some thoughts in view of the stride programme. Scientometrics, 21(3), 403–416.CrossRefGoogle Scholar
  40. Van Raan, A. F. J. (2000). On growth, ageing, and fractal differentiation of science. Scientometrics, 47(2), 1588–2861.Google Scholar
  41. Watts, R. J., & Porter, A. L. (2003). R&D cluster quality measures and technology maturity. Technological Forecasting and Social Change, 70(8), 735–758.CrossRefGoogle Scholar
  42. Weingart, S., Guo, H., Börner, K., Boyack, K. W., Linnemeier, M. W., & Duhon, R. J., et al. (2010). Science of Science (Sci2) Tool User Manual. Accessed 28 Jan 2011.
  43. Zitt, M., & Bassecoulard, E. (2008). Challenges for scientometric indicators: Data de-mining, knowledge flows measurements and diversity issues. Ethics in Science and Environmental Politics, 8, 49–60.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.WISE LabDalian University of TechnologyDalianChina
  2. 2.Cyberinfrastructure for Network Science CenterSchool of Library and Information Science, Indiana UniversityBloomingtonUSA

Personalised recommendations