Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Science models as value-added services for scholarly information systems


The paper introduces scholarly Information Retrieval (IR) as a further dimension that should be considered in the science modeling debate. The IR use case is seen as a validation model of the adequacy of science models in representing and predicting structure and dynamics in science. Particular conceptualizations of scholarly activity and structures in science are used as value-added search services to improve retrieval quality: a co-word model depicting the cognitive structure of a field (used for query expansion), the Bradford law of information concentration, and a model of co-authorship networks (both used for re-ranking search results). An evaluation of the retrieval quality when science model driven services are used turned out that the models proposed actually provide beneficial effects to retrieval quality. From an IR perspective, the models studied are therefore verified as expressive conceptualizations of central phenomena in science. Thus, it could be shown that the IR perspective can significantly contribute to a better understanding of scholarly structures and activities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

  2. 2.

    Bradfordizing can be applied to document types other than journal article, e.g. monographs (cf. Worthen 1975; Mayr 2008, 2009). Monographs e.g. provide ISBN numbers which are also good identifiers for the Bradfordizing analysis.

  3. 3.

  4. 4.

  5. 5.

  6. 6.

    Actually, the author–author-relations are computed during indexing time and are retrieved by the system via particular facets added to the user’s query.

  7. 7.

  8. 8.

  9. 9.

  10. 10.

    However, a retrieval study with experts from different domains is currently carried out.

  11. 11.

    Moreover, we observed a high range of re-rankings done by Author Centrality. More than 90% of the documents in the result sets were captured by the author centrality based ranking.

  12. 12.

    See Huberman and Adamic (2004) and Mutschke (2004b) for first attempts in that direction.


  1. Al-Maskari, A., Sanderson, M., & Clough, P. (2008). Relevance judgments between TREC and Non-TREC assessors. Proceedings of SIGIR, 2009, 683–684.

  2. Alonso, O., & Mizzaro, S. (2009). Can we get rid of TREC assessors? Using Mechanical Turk for relevance assessment. In Proceedings of the SIGIR 2009 workshop on the future of IR evaluation (pp. 15–16).

  3. Barabasi, A. L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.

  4. Bassecoulard, E., Lelu, A., & Zitt, M. (2007). A modular sequence of retrieval procedures to delineate a scientific field: from vocabulary to citations and back. In E. Torres-Salinas & H. F. Moed (Eds.), Proceedings of the 11th international conference on scientometrics and informetrics (ISSI 2007), Madrid, Spain, 25–27 June 2007 (pp. 74–84).

  5. Bates, M. J. (1990). Where should the person stop and the information search interface start? Information Processing & Management, 26, 575–591.

  6. Bates, M. J. (2002). Speculations on browsing, directed searching, and linking in relation to the Bradford distribution. Paper presented at the Fourth International Conference on Conceptions of Library and Information Science (CoLIS 4).

  7. Bavelas, A. (1948). A mathematical model for group structure. Applied Anthropology, 7, 16–30.

  8. Beaver, D. (2004). Does collaborative research have greater epistemic authority? Scientometrics, 60(3), 309–408.

  9. Belkin, N. J. (1980). Anomalous states of knowledge as a basis for information retrieval. Canadian Journal of Information Science, 5, 133–143.

  10. Blair, D. C. (1990). Language and representation in information retrieval. Amsterdam, NY: Elsevier.

  11. Blair, D. C. (2002). The challenge of commercial document retrieval. Part II. A strategy for document searching based on identifiable document partitions. Information Processing and Management, 38(2), 293–304.

  12. Blair, D. C. (2003). Information retrieval and the philosophy of language. Annual Review of Information Science and Technology, 37, 3–50.

  13. Börner, K., & Scharnhorst, A. (2009). Visual conceptualizations and models of science. Journal of Informetrics, 3, 161–172.

  14. Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? JASIST, 61(12), 2389–2404.

  15. Bradford, S. C. (1934). Sources of information on specific subjects. Engineering, 137(3550), 85–86.

  16. Bradford, S. C. (1948). Documentation. London: Lockwood.

  17. Brookes, B. C. (1977). Theory of the Bradford Law. Journal of Documentation, 33(3), 180–209.

  18. Buckland, M., Chen, A., Chen, H.-M., Kim, Y., Lam, B., Larson, R., et al. (1999). Mapping entry vocabulary to unfamiliar metadata vocabularies. D-Lib Magazine, 5(1).

  19. Callon, M., Courtial, J.-P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235.

  20. Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3, 191–209.

  21. Efthimiadis, E. N. (1996). Query expansion. In M. E. Williams (Ed.), Annual review of information systems and technology (ARIST) (Vol. 31, pp. 121–187). Information Today.

  22. Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378–382.

  23. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.

  24. Freeman, L. C. (1978/1979). Centrality in social networks: Conceptual clarification. Social Networks, 1, 215–239.

  25. Freeman, L. C. (1980). The gatekeeper, pair-dependency and structural centrality. Quality & Quantity, 14, 585–592.

  26. Fuhr, N., Schaefer, A., Klas, C.-P., & Mutschke, P. (2002). Daffodil: An integrated desktop for supporting high-level search activities in federated digital libraries. In M. Agosti & C. Thanos (Eds.), Research and advanced technology for digital libraries. 6th European conference, EDCL 2002, proceedings (pp. 597–612). Berlin: Springer-Verlag.

  27. Glänzel, W., Janssens, F., & Thijs, B. (2009). A comparative analysis of publication activity and citation impact based on the core literature in bioinformatics. Scientometrics, 79(1), 109–129.

  28. He, Z.-L. (2009). International collaboration does not have greater epistemic authority. JASIST, 60(10), 2151–2164.

  29. Hjørland, B., & Nicolaisen, J. (2005). Bradford’s law of scattering: ambiguities in the concept of “subject”. Paper presented at the 5th International Conference on Conceptions of Library and Information Science.

  30. Huberman, B. A., & Adamic, L. A. (2004). Information dynamics in the networked world. Lect. Notes Phys. (Vol. 650, pp. 371–398).

  31. Jiang, Y. (2008). Locating active actors in the scientific collaboration communities based on interaction topology analysis. Scientometrics, 74(3), 471–482.

  32. Lang, F. R., & Neyer, F. J. (2004). Kooperationsnetzwerke und Karrieren an deutschen Hochschulen. KfZSS, 56(3), 520–538.

  33. Leydesdorff, L., de Moya-Anegón, F., & Guerrero-Bote, V. P. (2010). Journal maps on the basis of Scopus data: A comparison with the Journal Citation Reports of the ISI. JASIST, 61(2), 352–369.

  34. Leydesdorff, L., & Wagner, C. S. (2008). International collaboration in science and the formation of a core group. Journal of Informetrics, 2(4), 317–325.

  35. Liu, X., Bollen, J., Nelson, M. L., & van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information Processing and Management, 41(2005), 1462–1480.

  36. Lu, H., & Feng, Y. (2009). A measure of authors’ centrality in co-authorship networks based on the distribution of collaborative relationships. Scientometrics, 81(2), 499–511.

  37. Mayr, P. (2008). An evaluation of Bradfordizing effects. In Proceedings of WIS 2008, Berlin, fourth international conference on webometrics, informetrics and scientometrics & ninth COLLNET meeting. Humboldt-Universität zu Berlin.

  38. Mayr, P. (2009). Re-Ranking auf Basis von Bradfordizing für die verteilte Suche in Digitalen Bibliotheken. Berlin: Humboldt-Universität zu Berlin.

  39. Mayr, P., Mutschke, P., & Petras, V. (2008). Reducing semantic complexity in distributed digital libraries: Treatment of term vagueness and document re-ranking. Library Review, 57(3), 213–224.

  40. Mitra, M., Singhal, A., & Buckley C. (1998). Improving automatic query expansion. In Proceedings of SIGIR (pp. 206–214).

  41. Mutschke, P. (1994). Processing scientific networks in bibliographic databases. In H. H. Bock, et al. (Eds.), Information systems and data analysis. Prospects–foundations–applications. Proceedings 17th annual conference of the GfKl 1993 (pp. 127–133). Heidelberg: Springer-Verlag.

  42. Mutschke, P. (2001). Enhancing information retrieval in federated bibliographic data sources using author network based stratagems. In P. Constantopoulos & I. T. Sölvberg (Eds.), Research and advanced technology for digital libraries: 5th European conference, ECDL 2001, Proceedings (Vol. 2163, pp. 287–299). Notes in Computer Science. Berlin: Springer-Verlag.

  43. Mutschke, P. (2004a). Autorennetzwerke: Verfahren der Netzwerkanalyse als Mehrwertdienste für Informationssysteme. Bonn: Informationszentrum Sozialwissenschaften (IZ-Arbeitsbericht Nr. 32).

  44. Mutschke, P. (2004b). Autorennetzwerke: Netzwerkanalyse als Mehrwertdienst für Informationssysteme. In B. Bekavac, et al. (Eds.), Information zwischen Kultur und Marktwirtschaft: Proceedings des 9. Internationalen Symposiums für Informationswissenschaft (ISI 2004) (pp. 141–162). Konstanz: UVK Verl.-Ges.

  45. Mutschke, P. (2010). Zentralitäts- und Prestigemaße. In R. Häußling & C. Stegbauer (Eds.), Handbuch Netzwerkforschung (pp. 365–378). Wiesbaden: VS-Verlag für Sozialwissenschaften.

  46. Mutschke, P., & Quan-Haase, A. (2001). Collaboration and cognitive structures in social science research fields: Towards socio-cognitive analysis in information systems. Scientometrics, 52(3), 487–502.

  47. Mutschke, P., & Renner, I. (1995). Akteure und Themen im Gewaltdiskurs: Eine Strukturanalyse der Forschungslandschaft. In E. Mochmann & U. Gerhardt (Eds.), Gewalt in Deutschland: Soziale Befunde und Deutungslinien (pp. 147–192). Munich: Oldenburg Verlag.

  48. Newman, M. E. J. (2001). The structure of scientific collaboration networks. PNAS, 98, 404–409.

  49. Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. PNAS, 101, 5200–5205.

  50. Petras, V. (2006). Translating dialects in search: Mapping between specialized languages of discourse and documentary languages. Berkley: University of California.

  51. Plaunt, C., & Norgard, B. A. (1998). An association based method for automatic indexing with a controlled vocabulary. Journal of the American Society for Information Science, 49(August 1998), 888–902.

  52. Schaer, P., Mayr, P., & Mutschke, P. (2010). Implications of inter-rater agreement on a student information retrieval evaluation. In M. Atzmüller, et al. (Eds.), Proceedings of LWA2010—Workshop-Woche: Lernen, Wissen & Adaptivität.

  53. Shiri, A., & Revie, C. (2006). Query expansion behavior within a thesaurus-enhanced search environment: A user-centered evaluation. JASIST, 57(4), 462–478.

  54. Sonnewald, D. H. (2007). Scientific collaboration. Annual Review of Information Science & Technology, 41(1), 643–681.

  55. Voorhees, E. M., & Harman, D. K. (Eds.). (2005). TREC: Experiment and evaluation in information retrieval. Cambridge, MA: The MIT Press.

  56. White, H. D. (1981). ‘Bradfordizing’ search output: how it would help online users. Online Review, 5(1), 47–54.

  57. White, R. W., & Marchionini, G. (2007). Examining the effectiveness of real-time query expansion. Information Processing & Management, 43(3), 685–704.

  58. Worthen, D. B. (1975). The application of Bradford’s law to monographs. Journal of Documentation, 31(1), 19–25.

  59. Yan, E., & Ding, Y. (2009). Applying centrality measures to impact analysis: A coauthorship network analysis. JASIST, 60(10), 21-07-2118.

  60. Yin, L., Kretschmer, H., Hannemann, R. A., & Liu, Z. (2006). Connection and stratification in research collaboration: An analysis of the COLLNET network. Information Processing & Management, 42, 1599–1613.

  61. Zhou, D., Orshansky, S. A., Zha, H., & Giles, C. L. (2007). Co-ranking authors and documents in a heterogeneous network. In Proceedings of the 2007 seventh IEEE international conference on data mining (pp. 739–744).

Download references


We would like to express our grateful thanks to Andrea Scharnhorst for her valuable comments. Special thanks go to the students in two independent LIS courses at Humboldt University (guided by our former colleague Vivien Petras) and University of Applied Science in Darmstadt. These students took part in our first IRM retrieval test in the winter semester 2009/2010. We thank Hasan Bas who did the main implementation work for our assessment tool. The project is funded by DFG, grant No. INST 658/6-1.

Author information

Correspondence to Peter Mutschke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mutschke, P., Mayr, P., Schaer, P. et al. Science models as value-added services for scholarly information systems. Scientometrics 89, 349–364 (2011).

Download citation


  • Retrieval system
  • Value-added services
  • Science models
  • IR
  • Re-ranking
  • Evaluation