Advertisement

Scientometrics

, Volume 88, Issue 3, pp 929–947 | Cite as

Bibliometric analysis of diadromous fish research from 1970s to 2010: a case study of seven species

  • N. Nikolic
  • J.-L. Baglinière
  • C. Rigaud
  • C. Gardes
  • M. L. Masquilier
  • C. Taverny
Article

Abstract

The aim of this study was to explore the research trends and the evolution of publications covered on diadromous fish from 1970s to 2010. We conducted a bibliometric analysis on seven patrimonial species: Atlantic salmon (Salmo salar), Brown and Sea trout (Salmon trutta), Allis shad (Alosa alosa), Twaite shad (Alosa fallax), Eel (Anguilla Anguilla), Sea lamprey (Petromyzon marinus) and River lamprey (Lampetra fluviatilis). We used bibliometric techniques on the total number of research (articles, books, and conferences) in all country in function of main fields such as growth/age, reproduction, migration, habitat, aquaculture, diseases, diet, abundance, fisheries, climate change, toxicology, dams/fishways, genetics, taxonomy, modelling, resource management, and stocking. The results revealed a clear difference in the evolution of scientific studies by species and by countries. The analysis comparisons showed the intensity of certain topics by species with the emergence of new ones, the economic impact on sciences and the increased support of conservation plan management for certain species, such as salmon and lamprey in France. This study also emerged that French research is not always consistent with the international trend which suggests the dominance of management systems on scientific studies.

Keywords

Diadromous fish Bibliometric Research Evolution Clustering Conservation 

Mathematics Subject Classification (2000)

9Z 01 

Notes

Acknowledgments

The authors wish to thank Jacqueline Prod’Homme (IFREMER) and Vincent Pannetier (UPS) for their help on the ASFA database. Pascal Cuxac and Dominique Besagni (INIST-CNRS) for their tips with Stanalyst. We also thank Rob Taylor for his English error corrections.

References

  1. Aprahamian, M. W., Bagliniere, J. L., Sabatié, M. R., Alexandrino, P., & Aprahamian, C. D. (2003). Synopsis of biological data on Alosa alosa and Alosa fallax spp. In Literature review and bibliography (p. 346). Warrington: Environment Agency.Google Scholar
  2. Baglinière, J. L. (2000). Le genre Alosa sp. In J. L. Baglinière & P. Elie (Eds.), Les aloses (Alosa alosa et Alosa fallax spp.): Ecobiologie et variabilité des populations (pp. 3–30). Paris: INRA-CEMAGREF.Google Scholar
  3. Baglinière, J. L., Sabatié, M. R., Alexandrino, P. J., Aprahamian, C. D., & Elie, P. (2000). Les aloses: une richesse patrimoniale à conserver et à valoriser. In J. L. Baglinière & P. Elie (Eds.), Les aloses (Alosa alosa et Alosa fallax spp.): Ecobiologie et variabilité des populations (pp. 263–275). Paris: INRA-CEMAGREF.Google Scholar
  4. Beaulaton, L., Taverny, C., & Castelnaud, G. (2008). Fishing, abundance and life history traits of the anadromous sea lamprey in Europe (Petromyzon marinus). Fisheries Research, 92, 90–101.Google Scholar
  5. Belliard, J. (1994). Le peuplement ichtyologique du bassin de la Seine. Rôle et signification des échelles temporelles et spatiales (p. 197). Thesis, Université Paris 6, Paris.Google Scholar
  6. Belliard, J., Marchal, J., Ditche, J. M., Tales, E., Sabatié, R., & Baglinière, J. L. (2009). Return of adult anadromous allis shad (Alosa alosa L.) in the river Seine, France: A sign of river recovery? River Research and Applications, 24, 1–7.Google Scholar
  7. Belpaire, C., Jansen, A., Denayer, B., De Charleroy, D., & Ollevier, F. (1993). Infection rates of a silver eel population Anguilla anguilla of the river yser basin (flanders) with Anguillicola crassus and effects of the parasite on the muscle composition and energy content o migrating male silver eel: Anguillicola and Anguillicolos. Rapporten buiten reeks van het instituut voor bosbouw en wildbeheer—sectie visserij, 1993(09). Groenendaal (Belgique): Instituut voor Bosbouw en Wildbeheer.Google Scholar
  8. Bergan, P. I., Gausen, D., & Hansen, L. P. (1991). Attempts to reduce the impact of reared Atlantic salmon on wild in Norway. Aquaculture, 98(1–3):319–324.Google Scholar
  9. Bernardeau, F. (1905). Pêche et reproduction du saumon en Loire (p. 1). Paris-Nancy: Berger-Levrault et Cie.Google Scholar
  10. Blank, M., Jürss, K., & Bastrop, R. (2008). A mitochondrial multigene approach contributing to the systematics of the brook and river lampreys and the phylogenetic position of Eudontomyzon mariae Canadian Journal of Fisheries and Aquatic Sciences, 65, 2780–2790.Google Scholar
  11. Boisset, L., & Vibert, R. (1945). La pêche fluviale en France (p. 1). Paris: Son état. Son avenir. Libr. Champs Elyssées.Google Scholar
  12. Bolster, W. J. (2008). Putting the ocean in Atlantic history: Maritime communities and marine ecology in the Northwest Atlantic: 1500–1800. American Historical Review, 113, 19–47.CrossRefGoogle Scholar
  13. Bonhommeau, S. (2008). Effets environnementaux sur la survie larvaire de l’Anguille (Anguilla anguilla) et conséquences sur le recrutement. PhD Thesis, Agrocampus Ouest, Rennes.Google Scholar
  14. Castelnaud, G. (2000). Localisation de la pêche, effectifs de pêcheurs et production des espèces amphihalines dans les fleuves français. Bulletin Francais de la Peche et de la Pisciculture, 357(360), 439–460.Google Scholar
  15. Castonguay, M., Hodson, P. V., Couillard, C. M., Eckersley, M. J., Dutil, J. D., & Verreault, G. (1994). Why is recruitment of the american eel, Anguilla rostrata declining in the St Lawrence river and gulf? Canadian Journal of Fisheries and Aquatic Sciences, 51(2), 479–488.Google Scholar
  16. Chisholm, I., & Aadland, L. (1994). Environmental impacts of river regulation (p. 31). St. Paul, MN: Minnesota Department of Natural Resources.Google Scholar
  17. Dekker, W. (2004). Slipping through our hands: Population dynamics of the European eel. PhD dissertation, University of Amsterdam, Amsterdam.Google Scholar
  18. Drinkwater, K. F., & Frank, K. T. (1994). Effects of river regulation and diversion on marine fish and invertebrates. Aquatic Conservation: Freshwater and Marine Ecosystems, 4, 135–151.CrossRefGoogle Scholar
  19. Elie, P., Taverny, C., Sabatie, M. R., & Mennesson-Boisneau, C. (2000). L’exploitation halieutique. In J. L. Bagniniere & P. Elie (Eds.), Les aloses (Alosa alosa et Alosa fallax spp.): écobiologie et variabilité des populations (pp. 199–226). Paris: INRA-Cemagref Editions.Google Scholar
  20. Elson, P. F. (1957). Number of salmon needed to maintain stocks. Canadian Journal of Fish Culturist, 21, 18–23.Google Scholar
  21. Espanhol, R., Almeida, P. R., & Alves, M. J. (2007). Evolutionary history of lamprey paired species Lampetra fluviatilis (L.) and Lampetra planeri (Bloch) as inferred from mitochondrial DNA variation. Molecular Ecology, 16, 1909–1924.Google Scholar
  22. Fage, L. (1912). Essais d’acclimatation du saumon dans le bassin méditerranéen. Bulletin de l’Institut Océanographique de Monaco, 225, 1–13.Google Scholar
  23. Ferguson, A. (2006). Genetics of sea trout, with particular reference to Britain and Ireland. In G. Harris & N. Milner (Eds.), Sea Trout. Biology, conservation and management (pp. 157–182). Oxford: Blackwell Publishing.Google Scholar
  24. Feunteun, E. (2002). Management and restoration of European eel population (Anguilla anguilla): An impossible bargain. Ecological Engineering, 18, 575–591.Google Scholar
  25. Fricout, G. (1932). La pisciculture en Dordogne. In L’agriculture de la Dordogne, Ann. Off. Agr. Règ. Sud-Ouest, 19, 400–419.Google Scholar
  26. Giacomini, E. (1912). Anatomia microscopica e sviluppo del sistema interrenale e cromaffine (sistema feocromo) dei salmonidi. II. Sviluppo. Memorie della R. Accademia delle Scienze dell’Istituto di Bologna. Classe di Scienze fisiche, 9, 381–437.Google Scholar
  27. Gross, M. R. (1987). Evolution of diadromy in fish. American Fisheries Society Symposium, 1, 14–25.Google Scholar
  28. Hawkins, A. D. (2000). Problems facing salmon in the sea–summing up. In D. H. Mills (Ed.), The ocean life of atlantic salmon: Environmental, biological factors influencing survival (pp. 211–222). Oxford: Fishing News Books.Google Scholar
  29. Helfman, G. S. (2007). Fish conservation: A guide to understanding and restoring global aquatic biodiversity and fishery resources. Washington: Island Press.Google Scholar
  30. Johnsen, B. O., & Jensen, A. J. (1986). Infestations of Atlantic salmon, Salmo salar, by Gyrodactylus salaris in Norwegian rivers. Journal of Fish Biology, 26, 233–241.Google Scholar
  31. Johnsen, B. O., & Jensen, A. J. (1991). The Gyrodactylus story in Norway. Aquaculture, 98, 289–302.Google Scholar
  32. Johnsen, B. O., & Jensen, A. J. (2003). Gyrodactylus salaris in Norwegian waters. In A. J. Veselov, E. P. Ieshko, N. N. Nemova, O. P. Sterligova, & Y. A. Shustov (Eds.), Atlantic salmon: biology, conservation and restoration (pp. 38–44). Petrozavodsk: Institute of Biology, Karelian Research Center, Russian Academy of Sciences.Google Scholar
  33. Jonsson, B., & Jonsson, N. (2004). Factors affecting marine production of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 61, 2369–2383.Google Scholar
  34. Jørgensen, E. H, Aas-Hansen, Ø., Maule, A. G., Espen Tau Strand, J. E., & Vijayan M. M. (2004). PCB impairs smoltification and seawater performance in anadromousArctic char (Salvelinus alpinus).Comparative Biochemistry and Physiology C: Toxicology and Pharmacology, 138, 203–212.Google Scholar
  35. Laize, F. (1923). Les migrations des poissons voyageurs en Seine. Bulletin de la Société d'Etude des Sciences Naturelles. Musée Histoire Naturelle. Elboeuf, 41, 28–32.Google Scholar
  36. Larinier, M. (1978). Etude du fonctionnement d’une passe à poissons à ralentisseurs plans. Bulletin Francais de la Peche et de la Pisciculture, 271, 40–54.Google Scholar
  37. Larinier, M. (2001). Environmental issues, dams and fish migration. In G. Marmulla (Ed.), Dams, fish, fisheries: Opportunities, challenges, conflict resolution (pp. 45–90). Rome: Food and Agricultural Organization of United Nations.Google Scholar
  38. Larinier, M., & Travade, F. (2002a). The design of fishways for shad. Bulletin Français de la Pêche et de la Pisciculture, 364(suppl), 135–146.Google Scholar
  39. Larinier, M., & Travade, F. (2002b). Downstream migration: problems and facilities. Bulletin Français de la Pêche et de la Pisciculture, 364(suppl), 181–207.Google Scholar
  40. Larsson, P., Hamrin, S., & Okla, L. (1990). Fat content as a factor inducing migratory behavior in the eel (Anguilla anguilla L.) to the Sargasso Sea. Naturwissenschaften, 77, 488–490.Google Scholar
  41. Lassalle, G., & Rochard, E. (2009). Impact of 21st century climate change on diadromous fish spread over Europe, North Africa and the Middle East. Global Change Biology, 15, 1072–1089.CrossRefGoogle Scholar
  42. Lassalle, G., Crouzet, P., & Rochard, E. (2009). Modelling the current distribution of European diadromous fishes: an approach integrating regional anthropogenic pressures. Freshwater Biology, 54, 587–606.CrossRefGoogle Scholar
  43. Lavollée, G. (1902). Le saumon en Seine. Bulletin de la Société. Centrale d’Aquiculture et de Pêche, 14, 231–234.Google Scholar
  44. Ligon, F. K., Dietrich, W. E., & Trush, W. J. (1995). Downstream ecological effects of dams. BioScience, 45(3), 183–192.CrossRefGoogle Scholar
  45. Limburg, K. E., & Waldman, J. R. (2009). Dramatic declines in north Atlantic diadromous fish. BioScience, 59(11), 955–965.CrossRefGoogle Scholar
  46. Maisse, G., & Baglinière, J. L. (1991). Connaître les bases biologiques de la gestion, une idée toujours d’actualité pour la truite (Salmo trutta). In J. L. Baglinière & G. Maisse (Eds.), La Truite: Biologie et écologie (pp. 297–302). Paris: INRA Editions.Google Scholar
  47. Maisse, G., & Baglinière, J. L. (2001). Conservation et restauration des population de Saumon atlantique en France. Bilan de la réunion de Rennes. Seminar INRA.Google Scholar
  48. Mann, D. A., Higgs, D. M., Tavolga, W. N., Souza, M. J., & Popper, A. N. (2001). Ultrasound detection by clupeiform fish. Journal of the Acoustical Society of America, 109, 3048–3054.CrossRefGoogle Scholar
  49. Matagne, P. (2002). Comprendre l’écologie et son histoire. Collection La Bibliothèque du naturaliste. Lausanne: Delachaux et Niestlé.Google Scholar
  50. McDowall, R. M. (1988). Diadromy in fish: Migrations between freshwater and marine environments (p. 308). London: Croom Helm.Google Scholar
  51. McDowall, R. M. (2009). Making the best of two worlds: Diadromy in the evolution, ecology, and conservation of aquatic organisms. American Fisheries Society Symposium, 69, 1–22.Google Scholar
  52. Mouchel, J. M., Boët, P., Hubert, G., & Guerrini, M. C. (1998). Un bassin et des hommes: une histoire tourmentée. In M. Meybeck, G. de Marsily, & E. Fustec (Eds.), La Seine en son bassin (pp. 77–125). Paris: Fonctionnement écologique d’un système fluvial anthropisé. Elsevier.Google Scholar
  53. Myers, G. S. (1949). Usage of anadromous, catadromous, and allied terms for migratory fish. Copeia, 1949, 89–97.CrossRefGoogle Scholar
  54. Nelson, J. S. (2006). Fish of the world. Hoboken, NJ: Wiley.Google Scholar
  55. Palstra, A. P., Van Ginneken, V. J. T., Murk, A. J., & Van den Thillart G. E. E. J. M. (2006). Are dioxin-like contaminants responsible for the eel (Anguilla anguilla) drama? Naturwissenshaften, 93, 145–148.Google Scholar
  56. Palstra, A. P., Curiel, D., Fekkes, M., de Bakker, M., Székely, C., van Ginneken, V. J. T., et al. (2007). Swimming stimulates oocyte development of European eel. Aquaculture, 270(1–4), 321–332.CrossRefGoogle Scholar
  57. Parrish, D. L., Behnke, J., Gephard, S. R., McCormick, S. D., & Reeves G. H. (1998). Why aren’t there more Atlantic salmon (Salmo salar)? Canadian Journal of Fisheries and Aquatic Sciences, 55(Suppl. 1), 281–287.Google Scholar
  58. Petts, G. E. (1984). Impounded rivers: Perspectives for ecological management (p. 322). Chichester: Wiley.Google Scholar
  59. Piou, C., & Prévost, E. (2009). Effet du changement climatique sur les populations de poissons migrateurs d’eau froide: Le cas des populations de saumon atlantique. Fonctionnement des écosystèmes aquatiques et changements globaux—Changement climatique et saumon (A7). ONEMA-INRA Report.Google Scholar
  60. Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., et al. (1997). The natural flow regime. BioScience, 47(11), 769–784.CrossRefGoogle Scholar
  61. Porcher, J. P., & Travade, F. (2002). Fishways: Biological basis, limits and legal considerations. Bulletin Français de la Pêche et de la Pisciculture, 364(Suppl), 9–20.Google Scholar
  62. Roule, L. (1920). Etude sur le saumon des eaux douces de la France considéré au point de vue de son état naturel et du repeuplement de nos rivières (p. 1). Paris: Ministry of Agriculture.Google Scholar
  63. Sabatié, M. R. (1993). Recherches sur l’écologie et la biologie des aloses au Maroc (Alosa alosa L. 1758 et Alosa fallax Lac. 1803). Exploitation et taxinomie des populations atlantiques. Bioécologie des aloses de l’oued Sebou (p. 326 +annexes). Thèse de Doctorat de l’Université de Bretagne Occidentale en Océanologie Biologique. Google Scholar
  64. Schindler, D. W. (2001). The cumulative effects of climate warning and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences, 58, 18–29.CrossRefGoogle Scholar
  65. Schreiber, A., & Engelhorn, R. (1998). Population genetics of a cyclostome species pair, river lamprey (Lampetra fluviatilis L.) and brook lamprey (Lampetra planeri Bloch). Journal of Zoological Systematics and Evolutionary Research, 36, 85–99.Google Scholar
  66. Staggs, M., Lyons, J., & Visser, K. (1995). Habitat restoration following dam removal on the Milwaukee River at WestBend. In Wisconsin’s biodiversity as a management issue: A report to Department of Natural Resources Managers. Wisconsin Department of Natural Resources (pp. 202–203).Google Scholar
  67. Stanford, J. A., Ward, J. V., Liss, W. J., Frissell, C. A., Williams, R. N., Lichatowich, J. A., et al. (1996). A general protocol for restoration of regulated rivers. Regulated Rivers: Research and Management, 12, 91–413.CrossRefGoogle Scholar
  68. Taverny, C., & Elie, P. (2010). Les lamproies en Europe de l’Ouest. Écophases, espèces et habitats. Editions QUAE, coll. Guide pratique (p. 112).Google Scholar
  69. Thibault, M. (1987). Eléments de la problématique du Saumon atlantique en France. In M. Thibault & R. Billard (Eds.), La restauration des rivières à saumon, colloque franco- québécois, Bergerac, 28 mai-1er juin 1985 (pp. 413–425). Paris: INRA.Google Scholar
  70. Van den Thillart, G. E. E. J. M., Dufour, S., Elie, P., Volkaert, F., Sebert, P., Rankin, C., et al. (2005). Estimation of the reproduction capacity of European eel: EELREP Final Report (p. 272).Google Scholar
  71. Vibert, R. (1950). Recherche sur le Saumon de l’Adour (Salmo salar L.) (Ages, croissance, cycle génétique, races), 1942–1948. Annales de la Station Centrale d’Hydroécologie Appliquée, 3, 27–148.Google Scholar
  72. Ward, J. V., & Stanford, J. A. (1995). Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management, 11, 105–119.CrossRefGoogle Scholar
  73. Wirth, T., & Bernatchez, L. (2003). Decline of the North Atlantic eels: A fatal synergy? Proceedings of the Royal Society London B, 270, 681–688.CrossRefGoogle Scholar
  74. Yeager, B. L. (1994). Impacts of reservoirs on the aquatic environment of regulated rivers. Tennessee Valley Authority, Water Resources, Aquatic Biology Department, Norris, Tennessee. TVA/WR/AB-93/1.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • N. Nikolic
    • 1
  • J.-L. Baglinière
    • 1
  • C. Rigaud
    • 2
  • C. Gardes
    • 3
  • M. L. Masquilier
    • 4
  • C. Taverny
    • 2
  1. 1.Laboratoire Ecologie et Santé des Ecosystèmes (UMR 985) INRA-AgrocampusRennesFrance
  2. 2.Cemagref UR EPBXCestas CedexFrance
  3. 3.CemagrefISTCestas CedexFrance
  4. 4.INIST-CNRS (UPS76)Vandoeuvre les Nancy CedexFrance

Personalised recommendations