Advertisement

Scientometrics

, Volume 87, Issue 3, pp 683–685 | Cite as

The impact factor rank-order distribution revisited

  • L. Egghe
Article

There is some controversy around the impact factor (IF) rank-order distribution. The controversy is around the shape of the IF-rank-order distribution. In some articles (Lancho-Barrantes et al. 2010; Guerrero-Bote et al. 2007) one claims examples of convexly decreasing IF-rank-order distributions, while in other contributions the S-shape (first convex, then concave) is advocated (Mansilla et al. 2007; Martinez-Mekler et al. 2009; Campanario 2010a,b; Egghe 2009). Egghe and Waltman (2011) show both shapes.

The difference between the two shapes can be explained through the size-frequency distribution of impact factors. To be as clear as possible we will repeat here the definitions of rank-order distributions and size-frequency distributions. They can be given in a general context of sources and items (Egghe 2005) but since, in this note we are only interested in the journal-IF relation, we will, mainly, use this terminology.

Let us have a set of journals (e.g. in a certain field), each...

Keywords

Gaussian Distribution Visual Inspection Impact Factor Number Theory Inverse Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Campanario, J. M. (2010a). Distribution of changes in impact factors over time. Scientometrics, 84(1), 35–42.CrossRefGoogle Scholar
  2. Campanario, J. M. (2010b). Self-citations that contribute to the journal impact factor: An investment-benefit-yield analysis. Journal of the American Society for Information Science and Technology, 61(12), 2575–2580.CrossRefGoogle Scholar
  3. Egghe, L. (2005). Power laws in the information production process: Lotkaian Informetrics. Oxford, UK: Elsevier.Google Scholar
  4. Egghe, L. (2009). Mathematical derivation of the impact factor distribution. Journal of Informetrics, 3(4), 290–295.CrossRefMathSciNetGoogle Scholar
  5. Egghe, L., & Waltman, L. (2011). Relations between the shape of a size-frequency distribution and the shape of a rank-frequency distribution. Information Processing and Management, to appear.Google Scholar
  6. Guerrero-Bote, V., Zapico-Alonso, F., Espinosa-Calvo, M. E., Gómez-Crisóstomo, R., & De Moya-Anegón, F. (2007). Import-export of knowledge between scientific subject categories: The iceberg hypothesis. Scientometrics, 71(3), 423–441.CrossRefGoogle Scholar
  7. Lancho-Barrantes, B. S., Guerrero-Bote, V. P., & Moya-Anegón, F. (2010). The iceberg hypothesis revisited. Scientometrics, 85(2), 443–461.CrossRefGoogle Scholar
  8. Mansilla, R., Köppen, E., Cocho, G., & Miramontes, P. (2007). On the behavior of journal impact factor rank-order distribution. Journal of Informetrics, 1(2), 155–160.CrossRefGoogle Scholar
  9. Martinez-Mekler, G., Alvarez Martinez, R., Beltrán del Rio, M., Mansilla, R., Miramontes, P., & Cocho, G. (2009). Universality of rank-order distributions on the arts and sciences. PLoS ONE, 4(3), e4791.CrossRefGoogle Scholar
  10. Waltman, L., & van Eck, N. J. (2009). Some comments on Egghe’s derivation of the impact factor distribution. Journal of Informetrics, 3(4), 363–366.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Universiteit Hasselt (Uhasselt)DiepenbeekBelgium
  2. 2.Universiteit Antwerpen (UA)AntwerpenBelgium

Personalised recommendations