Advertisement

Scientometrics

, Volume 85, Issue 1, pp 65–79 | Cite as

Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in Technology Foresight

  • Hsin-Ning Su
  • Pei-Chun Lee
Article

Abstract

This study proposes an approach for visualizing a knowledge structure, the proposed approach creates a three-dimensional “Research focused parallelship network”, a “Keyword Co-occurrence Network”, and a two-dimensional knowledge map to facilitate visualization of the knowledge structure created by journal papers from different perspectives. The networks and knowledge maps can be depicted differently by choosing different information as the network actor, e.g. author, institute or country keyword, to reflect knowledge structures in micro-, meso-, and macro-levels, respectively. Technology Foresight is selected as an example to illustrate the method proposed in this study. A total of 556 author keywords contained in 181 Technology Foresight related papers have been analyzed. European countries, China, India and Brazil are located at the core of Technology Foresight research. Quantitative ways of mapping journal papers are investigated in this study to unveil emerging elements as well as to demonstrate dynamics and visualization of knowledge. The quantitative method provided in this paper shows a possible way of visualizing and evaluating knowledge structure; thus a computerized calculation is possible for potential quantitative applications, e.g. R&D resource allocation, research performance evaluation, science map, etc.

Keywords

Keyword Network theory Knowledge structure Technology Foresight 

References

  1. Alsan, A., & Oner, M. A. (2003). An integrated view of foresight: Integrated foresight management model. Foresight, 5, 33–45.CrossRefGoogle Scholar
  2. Amsteus, M. (2008). Managerial foresight: Concept and measurement. Foresight, 10, 53–66.CrossRefGoogle Scholar
  3. Baldwin, C., Hughes, J., Hope, T., Jacoby, R., & Ziebland, S. (2003). Ethics and dementia: Mapping the literature by bibliometric analysis. International Journal of Geriatric Psychiatry, 18, 41–54.CrossRefGoogle Scholar
  4. Bhattacharya, S., & Basu, P. K. (1998). Mapping a research area at the micro level using co-word analysis. Scientometrics, 43, 359–372.CrossRefGoogle Scholar
  5. Brass, D. J., & Burkhardt, M. E. (1992). Centrality and power in organizations. Networks and Organizations: Structure, Form and Action, 191, 215.Google Scholar
  6. Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics, 22, 155–205.CrossRefGoogle Scholar
  7. Cambrosio, A., Limoges, C., Courtial, J. P., & Laville, F. (1993). Historical scientometrics? Mapping over 70 years of biological safety research with coword analysis. Scientometrics, 27, 119–143.CrossRefGoogle Scholar
  8. Chiu, W. T., & Ho, Y. S. (2007). Bibliometric analysis of tsunami research. Scientometrics, 73, 3–17.CrossRefGoogle Scholar
  9. Chiu, W. T., Huang, J. S., & Ho, Y. S. (2004). Bibliometric analysis of severe acute respiratory syndrome-related research in the beginning stage. Scientometrics, 61, 69–77.CrossRefGoogle Scholar
  10. Clarke, A., Gatineau, M., Thorogood, M., & Wyn-Roberts, N. (2007). Health promotion research literature in Europe 1995–2005. The European Journal of Public Health, 17, 24–28.CrossRefGoogle Scholar
  11. Coulter, N., Monarch, I., & Konda, S. (1998). Software engineering as seen through its research literature: A study in co-word analysis. Journal of the American Society for Information Science, 49, 1206–1223.CrossRefGoogle Scholar
  12. Courtial, J. P. (1994). A coword analysis of scientometrics. Scientometrics, 31, 251–260.CrossRefGoogle Scholar
  13. Cuhls, K., Breiner, S., & Grupp, H. (1995). Delphi-Bericht 1995 zur Entwicklung von Wissenschaft und Technik-Mini-Delphi. Karlsruhe: Fraunhofer-Institut ISI (auch herausgegeben als BMBF-Brosch\üre, Bonn 1996).Google Scholar
  14. Czaplicka-Kolarz, K., Stańczyk, K., & Kapusta, K. (2009). Technology foresight for a vision of energy sector development in Poland till 2030. Delphi survey as an element of technology foresighting. Technological Forecasting and Social Change, 76, 327–338.CrossRefGoogle Scholar
  15. Dalkey, N. C. (1969). The Delphi method: An experimental study of group opinion. Santa Monica: RAND Corp.Google Scholar
  16. De Looze, M. A., & Lemarié, J. (1997). Corpus relevance through co-word analysis: An application to plant proteints. Scientometrics, 39, 267–280.CrossRefGoogle Scholar
  17. Ding, Y., Chowdhury, G. G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using co-word analysis. Information Processing and Management, 37, 817–842.CrossRefzbMATHGoogle Scholar
  18. Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11, 147–162.CrossRefGoogle Scholar
  19. Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1, 215–239.CrossRefGoogle Scholar
  20. Gavigan, J. P., & Scapolo, F. (1999). A comparison of national foresight exercises. Foresight, 1, 495–517.CrossRefGoogle Scholar
  21. Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–1380.CrossRefGoogle Scholar
  22. Grupp, H., & Linstone, H. A. (1999). National technology foresight activities around the globe: An experimental study of group opinion. Technological Forecasting and Social Change, 60, 85–94.CrossRefGoogle Scholar
  23. Gupta, B. M., & Bhattacharya, S. (2004). A bibliometric approach towards mapping the dynamics of science and technology. DESIDOC Bulletin of Information Technology, 24, 3–8.Google Scholar
  24. Havas, A. (2003). Evolving foresight in a small transition economy. Journal of Forecasting, 22, 179–201.CrossRefGoogle Scholar
  25. Helmer, O., & Rescher, N. (1959). On the epistemology of the inexact sciences, Management Science, 25–52.Google Scholar
  26. Hinze, S. (1994). Bibliographical cartography of an emerging interdisciplinary discipline: The case of bioelectronics. Scientometrics, 29, 353–376.CrossRefGoogle Scholar
  27. Ho, Y. S. (2007). Bibliometric Analysis of Adsorption Technology in Environmental Science. Journal of Environmental Protection Science, 1, 1–11.Google Scholar
  28. Irvine, J., & Martin, B. R. (1984). Foresight in science: Picking the winners. London: Pinter.Google Scholar
  29. Kajikawa, Y., & Takeda, Y. (2008). Structure of research on biomass and bio-fuels: A citation-based approach. Technological Forecasting and Social Change, 75, 1349–1359.CrossRefGoogle Scholar
  30. Kajikawa, Y., & Takeda, Y. (2009). Citation network analysis of organic LEDs. Technological Forecasting and Social Change, 76, 1115–1123.CrossRefGoogle Scholar
  31. Kajikawa, Y., Yoshikawa, J., Takeda, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75, 771–782.CrossRefGoogle Scholar
  32. Kaplan, A., Skogstad, A. L., & Girshick, M. A. (1950). The prediction of social and technological events. Public Opinion Quarterly, 14, 93–110.CrossRefGoogle Scholar
  33. Keenan, M., & Popper, R. (2008). Comparing foresight ‘style’ in six world regions. Foresight, 10, 16–38.CrossRefGoogle Scholar
  34. Kostoff, R. N. (2008a). Literature-related discovery (LRD): Introduction and background. Technological Forecasting and Social Change, 75, 165–185.CrossRefGoogle Scholar
  35. Kostoff, R. N. (2008b). Literature-related discovery (LRD): Potential treatments for cataracts. Technological Forecasting and Social Change, 75, 215–225.CrossRefGoogle Scholar
  36. Kostoff, R. N. (2008c). Comparison of China/USA science and technology performance. Journal of Informetrics, 2, 354–363.CrossRefGoogle Scholar
  37. Kostoff, R. N., Antonio del Río, J., Cortés, H. D., Smith, C., Smith, A., Wagner, C., et al. (2005a). The structure and infrastructure of Mexico’s science and technology. Technological Forecasting and Social Change, 72, 798–814.CrossRefGoogle Scholar
  38. Kostoff, R. N., Bhattacharya, S., & Pecht, M. (2007a). Assessment of China’s and India’s science and technology literature—introduction, background, and approach. Technological Forecasting and Social Change, 74, 1519–1538.CrossRefGoogle Scholar
  39. Kostoff, R. N., Block, J. A., Solka, J. L., Briggs, M. B., Rushenberg, R. L., Stump, J. A., et al. (2008a). Literature-related discovery (LRD): Lessons learned, and future research directions. Technological Forecasting and Social Change, 75, 276–299.CrossRefGoogle Scholar
  40. Kostoff, R. N., & Briggs, M. B. (2008). Literature-related discovery (LRD): Potential treatments for Parkinson’s disease. Technological Forecasting and Social Change, 75, 226–238.CrossRefGoogle Scholar
  41. Kostoff, R. N., Briggs, M. B., & Lyons, T. J. (2008c). Literature-related discovery (LRD): Potential treatments for multiple sclerosis. Technological Forecasting and Social Change, 75, 239–255.CrossRefGoogle Scholar
  42. Kostoff, R. N., Briggs, M. B., Rushenberg, R. L., Bowles, C. A., Icenhour, A. S., Nikodym, K. F., et al. (2007c). Chinese science and technology—structure and infrastructure. Technological Forecasting and Social Change, 74, 1539–1573.CrossRefGoogle Scholar
  43. Kostoff, R. N., Briggs, M. B., Rushenberg, R. L., Bowles, C. A., Pecht, M., Johnson, D., et al. (2007d). Comparisons of the structure and infrastructure of Chinese and Indian Science and Technology. Technological Forecasting and Social Change, 74, 1609–1630.CrossRefGoogle Scholar
  44. Kostoff, R. N., Briggs, M. B., Solka, J. L., & Rushenberg, R. L. (2008b). Literature-related discovery (LRD): Methodology. Technological Forecasting and Social Change, 75, 186–202.CrossRefGoogle Scholar
  45. Kostoff, R. N., Eberhart, H. J., & Toothman, D. R. (1998). Database tomography for technical intelligence: A roadmap of the near-earth space science and technology literature. Information Processing and Management, 34, 69–85.CrossRefGoogle Scholar
  46. Kostoff, R. N., Johnson, D., Bowles, C. A., Bhattacharya, S., Icenhour, A. S., Nikodym, K., et al. (2007b). Assessment of India’s research literature. Technological Forecasting and Social Change, 74, 1574–1608.CrossRefGoogle Scholar
  47. Kostoff, R. N., Koytcheff, R. G., & Lau, C. G. (2007e). Global nanotechnology research literature overview. Technological Forecasting and Social Change, 74, 1733–1747.CrossRefGoogle Scholar
  48. Kostoff, R. N., Solka, J. L., Rushenberg, R. L., & Wyatt, J. A. (2008d). Literature-related discovery (LRD): Water purification. Technological Forecasting and Social Change, 75, 256–275.CrossRefGoogle Scholar
  49. Kostoff, R. N., Tshiteya, R., Pfeil, K. M., & Humenik, J. A. (2002). Electrochemical power text mining using bibliometrics and database tomography. Journal of Power Sources, 110, 163–176.CrossRefGoogle Scholar
  50. Kostoff, R. N., Tshiteya, R., Pfeil, K. M., Humenik, J. A., & Karypis, G. (2005b). Power source roadmaps using bibliometrics and database tomography. Energy, 30, 709–730.CrossRefGoogle Scholar
  51. Kuhn, T. S. (1962). The structure of scientific revolutions. USA: University of Chicago.Google Scholar
  52. Landeta, J. (2006). Current validity of the Delphi method in social sciences. Technological Forecasting and Social Change, 73, 467–482.CrossRefGoogle Scholar
  53. Lee, P.-C., Su, H.-N., & Wu, F.-S. (2009). Quantitative mapping of patented technology—the case of electrical conducting polymer nanocomposite. Technological Forecasting and Social Change, 77, 466–478.CrossRefGoogle Scholar
  54. Li, T., Ho, Y. S., & Li, C. Y. (2008). Bibliometric analysis on global Parkinson’s disease research trends during 1991–2006. Neuroscience Letters, 441, 248–252.CrossRefGoogle Scholar
  55. Linstone, H. A., & Turoff, M. (1975). Delphi method: Techniques and applications. USA: Addison-Wesley.zbMATHGoogle Scholar
  56. Loveridge, D., Georghiou, L., & Nedeva, M. (1995). United Kingdom Technology Foresight Programme Delphi Survey.Google Scholar
  57. Martin, B. R., & Johnston, R. (1999). Technology foresight for wiring up the national innovation system: Experiences in Britain, Australia, and New Zealand. Technological Forecasting and Social Change, 60, 37–54.CrossRefGoogle Scholar
  58. Mu, R. P., Ren, Z. B., Yuan, S. D., & Yuan, Q. (2008). Technology foresight towards 2020 in China: The practice and its impacts. Technology Analysis and Strategic Management, 20, 287–308.CrossRefGoogle Scholar
  59. NISTEP. (2005). NISTEP Report No. 94–98: The 8th Science and Technology Foresight Survey. NISTEP.Google Scholar
  60. Noyons, E. C. M., & Van Raan, A. F. J. (1994). Bibliometric cartography of scientific and technological developments of an R&D field. Scientometrics, 30, 157–173.CrossRefGoogle Scholar
  61. Noyons, E. C. M., & Van Raan, A. F. J. (1998). Monitoring scientific developments from a dynamic perspective: Self-organized structuring to map neural network research. Journal of the American Society for Information Science, 49, 68–81.Google Scholar
  62. Rikken, F., Kiers, H. A. L., & Vos, R. (1995). Mapping the dynamics of adverse drug reactions in subsequent time periods using INDSCAL. Scientometrics, 33, 367–380.CrossRefGoogle Scholar
  63. Rip, A., & Courtial, J. P. (1984). Co-word maps of biotechnology: An example of cognitive scientometrics. Scientometrics, 6, 381–400.CrossRefGoogle Scholar
  64. Saritas, O., Taymaz, E., & Tumer, T. (2007). Vision 2023: Turkey’s National Technology Foresight Program: A contextualist analysis and discussion. Technological Forecasting and Social Change, 74, 1374–1393.CrossRefGoogle Scholar
  65. Schlossstein, D., & Park, B. (2006). Comparing recent technology foresight studies in Korea and China: Towards foresight-minded governments? Foresight, 8, 48–70.CrossRefGoogle Scholar
  66. Tian, Y., Wen, C., & Hong, S. (2008). Global scientific production on GIS research by bibliometric analysis from 1997 to 2006. Journal of Informetrics, 2, 65–74.CrossRefGoogle Scholar
  67. Van Eck, N. J., & Waltman, L. (2007). Bibliometric mapping of the computational intelligence field. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 15, 625.CrossRefGoogle Scholar
  68. Van Raan, A. F. J., & Tijssen, R. J. W. (1993). The neural net of neural network research: An exercise in bibliometric mapping. Scientometrics (Print), 26, 169–192.Google Scholar
  69. Wikipedia. (2009). Wikipedia.Google Scholar
  70. Wild, C., & Torgersen, H. (2000). Foresight in medicine Lessons from three European Delphi studies. Oxford: Oxford University Press.Google Scholar
  71. Yang, Q. Q., Gong, Z. M., Cheng, J. Y., & Wang, G. (2004). Technology foresight and critical technology selection in China. International Journal of Foresight and Innovation Policy, 1, 168–180.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Science and Technology Policy Research and Information Center, National Applied Research LaboratoriesTaipeiTaiwan
  2. 2.Graduate Institute of Technology and Innovation ManagementNational Chengchi UniversityTaipeiTaiwan
  3. 3.SPRU—Science and Technology Policy Research, The Freeman CentreUniversity of SussexBrightonUK

Personalised recommendations