Scientometrics

, Volume 85, Issue 3, pp 721–740 | Cite as

Academic team formation as evolving hypergraphs

  • Carla Taramasco
  • Jean-Philippe Cointet
  • Camille Roth
Article

Abstract

This paper quantitatively explores the social and socio-semantic patterns of constitution of academic collaboration teams. To this end, we broadly underline two critical features of social networks of knowledge-based collaboration: first, they essentially consist of group-level interactions which call for team-centered approaches. Formally, this induces the use of hypergraphs and n-adic interactions, rather than traditional dyadic frameworks of interaction such as graphs, binding only pairs of agents. Second, we advocate the joint consideration of structural and semantic features, as collaborations are allegedly constrained by both of them. Considering these provisions, we propose a framework which principally enables us to empirically test a series of hypotheses related to academic team formation patterns. In particular, we exhibit and characterize the influence of an implicit group structure driving recurrent team formation processes. On the whole, innovative production does not appear to be correlated with more original teams, while a polarization appears between groups composed of experts only or non-experts only, altogether corresponding to collectives with a high rate of repeated interactions.

Keywords

Scientific collaboration Team formation Social network analysis Hypergraphs Socio-semantic networks Epistemic dynamics social cohesion 

References

  1. Adams, J. D., Black, G. C., Clemmons, J. R., & Stephan, P. E. (2005). Scientific teams and institutional collaborations: Evidence from U.S. universities, 1981–1999. Research Policy, 34, 259–285.CrossRefGoogle Scholar
  2. Ancona, D. G., & Caldwell, D. F. (1992). Demography and design: Predictors of new product team performance. Organization Science, 3, 321–341.CrossRefGoogle Scholar
  3. Barabási, A.-L., Jeong, H., Ravasz, R., Neda, Z., Vicsek, T., & Schubert, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.MATHCrossRefMathSciNetGoogle Scholar
  4. Bollen, K. A., & Hoyle, R. H. (1990). Perceived cohesion: A conceptual and empirical examination. Social Forces, 69, 479–504.CrossRefGoogle Scholar
  5. Breiger, R. L. (1974). The duality of persons and groups. Social Forces, 53, 181–190.CrossRefGoogle Scholar
  6. Breiger, R. L. (1990). Social control and social networks: A model from Georg Simmel. In C. Calhoun, M. Meyer, & W. R. Scott (Eds.), Structures of power and constraint: Papers in honor of Peter M. Blau (pp. 453–476). Cambridge: Cambridge University Press.Google Scholar
  7. Bryant, S. L., Forte, A., & Bruckman, A. (2005). Becoming wikipedian: Transformation of participation in a collaborative online encyclopedia. In Proceedings of Group’05, Sanibel Island, FL, USA.Google Scholar
  8. Callon, M. (1986). Some elements of a sociology of translation: Domestication of the scallops and the fishermen of St Brieuc Bay. Power, Action and Belief: A New Sociology of Knowledge, 32, 196–233.Google Scholar
  9. Callon, M. (1994). Is science a public good?. Science, Technology & Human Values, 19, 395–424.CrossRefGoogle Scholar
  10. Callon, M., Law, J., & Rip, A. (1986). Mapping the dynamics of science and technology. London: MacMillan Press.Google Scholar
  11. Chubin, D. E. (1976). The conceptualization of scientific specialties. The Sociological Quarterly, 17, 448–476.CrossRefGoogle Scholar
  12. Constant, D., Sproull, L., & Kiesler, S. (1996). The kindness of strangers: The usefulness of electronic weak ties for technical advice. Organization Science, 7, 119–135.CrossRefGoogle Scholar
  13. Cowan, R., Jonard, N., & Zimmermann, J.-B. (2002). The joint dynamics of networks and knowledge, Computing in Economics and Finance 354. Society for Computational Economics, Deroian, Frederic.Google Scholar
  14. Crane, D. (1969). Social structure in a group of scientists: a test of the ’invisible college’ hypothesis. American Sociological Review, 34, 335–352.CrossRefGoogle Scholar
  15. Davis, G. F., & Greve, H. R. (1996). Corporate elite networks and governance changes in the 1980s. American Journal of Sociology, 103, 1–37.CrossRefGoogle Scholar
  16. de Beaver, D. (1986). Collaboration and teamwork in physics. Czech Journal of Physics B, 36, 14–18.CrossRefGoogle Scholar
  17. de Beaver, D., & Rosen, R. (1978–1979). Studies in scientific collaboration. Parts I, II, III. Scientometrics, 1, 65–84, 133–149, 231–245.Google Scholar
  18. Faulkner, R. R., & Anderson, A. B. (1987). Short-term projects and emergent careers: Evidence from hollywood. American Journal of Sociology, 92, 879–909.CrossRefGoogle Scholar
  19. Freeman, L. C. (2003). Finding social groups: A meta-analysis of the Southern women data. In R. Breiger, K. Carley, & P. Pattison (Eds.), Dynamic social network modeling and analysis (pp. 39–97). The National Academies Press, Washington, DC.Google Scholar
  20. Friedkin, N. E. (2004). Social cohesion. Annual Review of Sociology, 30, 409–425.CrossRefGoogle Scholar
  21. Guimera, R., Uzzi, B., Spiro, J., & Amaral, L. A. N. (2005). Team assembly mechanisms determine collaboration network structure and team performance. Science, 308, 697–702.CrossRefGoogle Scholar
  22. Haas, P. (1992). Introduction: Epistemic communities and international policy coordination. International Organization, 46, 1–35.CrossRefGoogle Scholar
  23. Jones, B. F., Wuchty, S., & Uzzi, B. (2008). Multi-university research teams: Shifting impact, geography, and stratification in science. Science, 322, 1259–1262.CrossRefGoogle Scholar
  24. Jones, C., Hesterly, W. S., & Borgatti, S. P. (1997). A general theory of network governance: Exchange conditions and social mechanisms. Academy of Management Review, 22, 911–945.CrossRefGoogle Scholar
  25. Karsai, I., & Penzes, Z. (1993). Comb building in social wasps: Self-organization and stigmergic script. Journal of Theoretical Biology, 161, 505–525.CrossRefGoogle Scholar
  26. Katz, J. S., & Martin, B. R. (1997). What is research collaboration?. Research Policy, 26, 1–18.CrossRefGoogle Scholar
  27. Kogut, B., & Metiu, A. (2001). Open-source software development and distributed innovation. Oxford Review of Economic Policy, 17, 248–264.CrossRefGoogle Scholar
  28. Laband, D. N., & Tollison, R. D. (2000). Intellectual collaboration. The Journal of Political Economy, 108, 632–662.CrossRefGoogle Scholar
  29. Larédo, P. (1995). Structural effects of ECRT & D programmes. Scientometrics, 34, 473–487.CrossRefGoogle Scholar
  30. Larédo, P. (1998). The networks promoted by the framework programme and the questions they raise about its formulation and implementation. Research Policy, 27, 589–598.CrossRefGoogle Scholar
  31. Latour, B., & Woolgar, S. (1979). Laboratory life: The social construction of scientific facts. Beverly Hills: Sage Publications.Google Scholar
  32. Lazega, E., Jourda, M.-T., Mounier, L., & Stofer, R. (2008). Catching up with big fish in the big pond? Multi-level network analysis through linked design. Social Networks, 30, 159–176.CrossRefGoogle Scholar
  33. Leahey, E., & Reikowsky, R. C. (2008). Research specialization and collaboration patterns in sociology. Social Studies of Science, 38, 425–440.CrossRefGoogle Scholar
  34. Levrel, J. (2006). Wikipédia, un dispositif médiatique de publics participants. Réseaux, 24, 185–218.CrossRefGoogle Scholar
  35. Lott, A. J., & Lott, B. E. (1965). Group cohesiveness as interpersonal attraction: A review of relationships with antecedent and consequent variables. Psychological Bulletin, 64, 259–309.CrossRefGoogle Scholar
  36. McPherson, M., & Smith-Lovin, L. (2002). Cohesion and membership duration: Linking groups, relations and individuals in an ecology of affiliation. Advances in Group Processes, 19, 1–36.CrossRefGoogle Scholar
  37. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444.CrossRefGoogle Scholar
  38. Melin, G., & Persson, O. (1996). Studying research collaboration usign co-authorships. Scientometrics, 36, 363–377.CrossRefGoogle Scholar
  39. Miles, R. E., & Snow, C. C. (1996). Organizations: New concepts for new forms. a reader in industrial organization. In P. J. Buckley & J. Michie (Eds.), Firms, organizations and contracts (pp. 429–441). Oxford: Oxford University Press.Google Scholar
  40. Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69, 213–238.CrossRefGoogle Scholar
  41. Mullins, N. C. (1972). The development of a scientific specialty: The phage group and the origins of molecular biology. Minerva, 10, 51–82.CrossRefGoogle Scholar
  42. Newman, M. E. J. (2001). Scientific collaboration networks. I. Network construction and fundamental results, and II. Shortest paths, weighted networks, and centrality. Physical Review E, 64, 016131, 016132.CrossRefGoogle Scholar
  43. Newman, M. E. J., Strogatz, S., & Watts, D. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64, 026118.CrossRefGoogle Scholar
  44. Noyons, E. C. M., & van Raan, A. F. J. (1998). Monitoring scientific developments from a dynamic perspective: Self-organized structuring to map neural network research. Journal of the American Society for Information Science, 49, 68–81.Google Scholar
  45. Powell, W. W. (1990). Neither market nor hierarchy: Network forms of organization. Research in Organizational Behavior, 12, 295–336.Google Scholar
  46. Ramasco, J. J., Dorogovtsev, S. N., & Pastor-Satorras, R. (2004). Self-organization of collaboration networks. Physical Review E, 70, 036106.CrossRefGoogle Scholar
  47. Rodriguez, M. A., & Pepe, A. (2008). On the relationship between the structural and socioacademic communities of a coauthorship network. Journal of Informetrics, 2, 195–201.CrossRefGoogle Scholar
  48. Roth, C. (2006). Co-evolution in epistemic networks—Reconstructing social complex systems. Structure and Dynamics: eJournal of Anthropological and Related Sciences, 1(3).Google Scholar
  49. Roth, C., & Cointet, J.-P. (2010). Social and semantic coevolution in knowledge networks. Social Networks, 32, 16–29.CrossRefGoogle Scholar
  50. Ruef, M. (2002). A structural event approach to the analysis of group composition. Social Networks, 24, 135–160.CrossRefGoogle Scholar
  51. Ruggie, J. G. (1975). International responses to technology: Concepts and trends. International Organization, 29, 557–583.CrossRefGoogle Scholar
  52. Simmel, G. (1898). The persistence of social groups. American Journal of Sociology, 3, 662.CrossRefGoogle Scholar
  53. Smangs, M. (2006). The nature of the business group: A social network perspective. Organization, 13, 889–909.CrossRefGoogle Scholar
  54. Stokols, D., Hall, K. L., Taylor, B. K., & Moser, R. P. (2008). The science of team science. American Journal of Preventive Medicine, 35, S78–S89.Google Scholar
  55. Uzzi, B., & Spiro, J. (2005). Collaboration and creativity: The small-world problem. American Journal of Sociology, 111, 447–504.CrossRefGoogle Scholar
  56. Wagner, C. S., & Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34, 1608–1618.CrossRefGoogle Scholar
  57. Welser, H. T., Gleave, E., Fischer, D., & Smith, M. (2007). Visualizing the signatures of social roles in online discussion groups. Journal of Social Structure, 8, 10.Google Scholar
  58. Wuchty, S., Jones, B., & Uzzi, B. (2007). The increasing dominance of teams in the production of knowledge. Science, 316, 1036–1039.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Carla Taramasco
    • 1
    • 2
    • 3
  • Jean-Philippe Cointet
    • 1
    • 2
    • 4
  • Camille Roth
    • 1
    • 2
    • 5
    • 6
  1. 1.ISC-PIF (Institut des Systèmes Complexes – Paris-Île-de-France)ParisFrance
  2. 2.CREA/ENSTA (CNRS/Ecole Polytechnique, France)ParisFrance
  3. 3.DECOMUniversidad de ValparaisoValparaisoChile
  4. 4.IFRIS (Institut Francilien Recherche Innovation Société)Champs-sur-MarneFrance
  5. 5.CAMS, EHESS/CNRSParisFrance
  6. 6.CRESSUniversity of SurreyGuildfordUK

Personalised recommendations