, Volume 85, Issue 1, pp 377–386 | Cite as

Shaping the European research collaboration in the 6th Framework Programme health thematic area through network analysis

  • José Luis OrtegaEmail author
  • Isidro F. Aguillo


This paper aims to analyse the collaboration network of the 6th Framework Programme of the EU, specifically the “Life sciences, genomics and biotechnology for health” thematic area. A collaboration network of 2,132 participant organizations was built and several variables were added to improve the visualization such as type of organization and nationality. Several statistical tests and structural indicators were used to uncover the main characteristic of this collaboration network. Results show that the network is constituted by a dense core of government research organizations and universities which act as large hubs that attract new partners to the network, mainly companies and non-profit organizations.


Scientometrics 6th Framework programme Research collaboration Network analysis 



We wish to thank the R&D Framework Programmes Department of the Centre for the Development of Industrial Technology (CDTI) of Spain for their support and the supply of 6th EU Framework Programme data.


  1. Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.CrossRefMathSciNetGoogle Scholar
  2. Barabasi, A. L., Albert, R., & Jeong, H. (2000). Scale-free characteristics of random networks: The topology of the world-wide web. Physica A, 281(1–4), 69–77.CrossRefGoogle Scholar
  3. Barabasi, A., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311(3–4), 590–614.zbMATHCrossRefMathSciNetGoogle Scholar
  4. Barber, M. J., Krueger, A., Krueger, T., & Roediger-Schulga, T. (2006). The network of European research and development projects. Physical Review E Statistical Nonlinear and Soft Matter Physics, 73(3), 1–13.Google Scholar
  5. Biotechnology Industry Organization. (2008). Technology, talent and capital: State biosciences initiatives 2008. Washington: Battelle. Retrieved October 07, 2009
  6. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for windows: Software for social network analysis. Harvard, MA: Analytic Technologies.Google Scholar
  7. Breschi, S., & Cusmano, L. (2004). Unveiling the texture of a European research area: Emergence of oligarchic networks under the EU framework programmes. International Journal of Technology Management, 27(8), 747–772.CrossRefGoogle Scholar
  8. Cabo, P. G. (1999). Industrial participation and knowledge transfer in joint R&D projects. International Journal of Technology Management, 18(3–4), 188–206.CrossRefGoogle Scholar
  9. Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association, 56(1961), 54–64.MathSciNetGoogle Scholar
  10. European Commission. (2008). FP6 final review: Subscription, implementation, participation. Brussels: Research Directorate General.
  11. Freeman, L. C. (1979). Centrality in networks: I. conceptual clarification. Social Networks, 1, 215–239.CrossRefGoogle Scholar
  12. Freeman, L. C. (1980). The gatekeeper, pair-dependency, and structural centrality. Quality and Quantity, 14, 585–592.Google Scholar
  13. Fruchtermann, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software Practice and Experience, 21(11), 1129–1164.CrossRefGoogle Scholar
  14. George, G., Zahra, S. A., & Robley Wood, D. (2002). The effects of business-university alliances on innovative output and financial performance: A study of publicly traded biotechnology companies. Journal of Business Venturing, 17(6), 577–609.CrossRefGoogle Scholar
  15. Gusmao, R. (2000). Developing and using indicators of multilateral S&T cooperation for policy making: The experience from European research programmes. Scientometrics, 47(3), 493–514.CrossRefMathSciNetGoogle Scholar
  16. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621.zbMATHCrossRefGoogle Scholar
  17. Leydesdorff, L. (2004). Clusters and maps of science journals based on bi-connected graphs in Journal Citation Reports. Journal of Documentation, 60(4), 371–427.CrossRefGoogle Scholar
  18. Mcmillan, G. S., Narin, F., & Deeds, D. L. (2000). An analysis of the critical role of public science in innovation: The case of biotechnology. Research Policy, 29(1), 1–8.CrossRefGoogle Scholar
  19. Newmann, M. E. (2001). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 016131.CrossRefGoogle Scholar
  20. Nooy, W., de Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. Cambridge, UK: Cambridge University Press.Google Scholar
  21. OECD. (2003). Frascati manual 2002. Paris: OECD Publishing.Google Scholar
  22. Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. Physical Review Letters, 86(14), 3200–3203.CrossRefGoogle Scholar
  23. Polis, G. A., & Strong, D. R. (1996). Food web complexity and community dynamics. The American Naturalist, 147(5), 813–846.CrossRefGoogle Scholar
  24. Price, D. de S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27, 292–306.CrossRefGoogle Scholar
  25. Roediger-Schulga, T., & Barber, M. J. (2007). R&D collaboration networks in the European framework programmes: Data processing, network construction and selected results (pp. 1–39). Maastricht: United Nation University.Google Scholar
  26. Roediger-Schulga, T., & Dachs, B. (2006). Does technology affect network structure? A quantitative analysis of collaborative research projects in two specific EU programmes (pp. 1–29). Maastricht: United Nation University.Google Scholar
  27. Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5, 269–287.CrossRefMathSciNetGoogle Scholar
  28. Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799–813.CrossRefGoogle Scholar
  29. Valverde, S., Sole, R. V., Bedau, M. A., & Packard, N. (2007). Topology and evolution of technology innovation networks. Physical Review E, 76(5), 056118.CrossRefGoogle Scholar
  30. Wagner, C. S., & Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608–1618.CrossRefGoogle Scholar
  31. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.R&D Analysis, Vice-Presidency for Science and TechnologyCSICMadridSpain
  2. 2.Cybermetrics LabCCHS-CSICMadridSpain

Personalised recommendations