Scientometrics

, Volume 85, Issue 3, pp 741–754 | Cite as

An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship

Article

Abstract

I propose the index \(\hbar\) (“hbar”), defined as the number of papers of an individual that have citation count larger than or equal to the \(\hbar\) of all coauthors of each paper, as a useful index to characterize the scientific output of a researcher that takes into account the effect of multiple authorship. The bar is higher for \(\hbar.\)

Keywords

h-index Coauthorship Coauthors Individual achievement Citations h-core \(\hbar\) \(\hbar\)-core Self-consistency 

References

  1. Alonso, S., Cabrerizo, F. J., Herrera-Viedma, E., & Herrera, F. (2009). h-Index: A review focused in its variants, computation and standardization for different scientific fields. Journal of Informetrics 3, 273–289, and references therein.CrossRefGoogle Scholar
  2. Anderson, T., Hankin, K., & Killworth, P. (2008). Beyond the durfee square: Enhancing the h-index to score total publication output. Scientometrics 76, 577–588.CrossRefGoogle Scholar
  3. Antonakis, J., & Lalive, R. (2008). Quantifying scholarly impact: IQp versus the Hirsch h. Journal of the American Society for Information Science and Technology 59, 956–969.CrossRefGoogle Scholar
  4. Batista, P. D., Campiteli, M. G., Kinouchi, O., & Martinez, A. S. (2006). Is it possible to compare researchers with different scientific interests? Scientometrics 68, 179–189.CrossRefGoogle Scholar
  5. Bornmann, L., & Daniel, H. D. (2007). What do we know about the h index? Journal of the American Society for Information Science and Technology 58, 1381–1385, and references therein.CrossRefGoogle Scholar
  6. Bornmann, L., Mutz, R., & Daniel, H. D. (2008). Are there better indices for evaluation purposes than the h index? A comparison of nine different variants of the h index using data from biomedicine. Journal of the American Society for Information Science and Technology 59, 830–837.CrossRefGoogle Scholar
  7. Burrell, Q. L. (2007). On the h-index, the size of the Hirsch core and Jin’s A-index. Journal of Informetrics 1, 170–177.CrossRefGoogle Scholar
  8. Chai, J. C., Hua, P. H., Rousseau, R., & Wan, J. K. (2008). Real and rational variants of the h-index and the g-index. In H. Kretschmer & F. Havemann (Eds.), Proceedings of WIS 2008, Berlin (Vol. 64, 71 pp.)Google Scholar
  9. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics 69, 131–152.CrossRefGoogle Scholar
  10. Egghe, L. (2008). Mathematical theory of the h- and g-index in case of fractional counting of authorship. Journal of the American Society for Information Science and Technology 59, 1608–1616.CrossRefGoogle Scholar
  11. Egghe, L., & Rousseau, R. (2008). An h-index weighted by citation impact. Information Processiong and Management 44, 770–780CrossRefGoogle Scholar
  12. Fersht, A. (2009). The most influential journals: Impact Factor and Eigenfactor. PNAS 106, 6883–6884.CrossRefGoogle Scholar
  13. Guns, R., & Rousseau, R. (2009). Real and rational variants of the h-index and the g-index. Journal of Informetrics 3, 64–71.CrossRefGoogle Scholar
  14. Hirsch, J. E. (2005). An index to quantify an individuals scientific research output. PNAS 102, 16569–16572.CrossRefGoogle Scholar
  15. Hirsch, J. E. (2007). Does the h index have predictive power? PNAS 104, 19193–19198.CrossRefGoogle Scholar
  16. Jin, B. (2007). The AR-index: Complementing the h-index. ISSI Newsletter 3, 6–6.Google Scholar
  17. Jin, B. H., Liang, L. M., Rousseau, R., & Egghe, L. (2007). The R- and AR-indices: Complementing the h-index. Chinese Science Bulletin 52, 855–863.CrossRefGoogle Scholar
  18. Komulski, M. (2006). A new Hirsch-type index saves time and works equally well as the original h-index. ISSI Newsletter 2, 4–6.Google Scholar
  19. Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. PNAS 105, 17268–17272.CrossRefGoogle Scholar
  20. Rousseau, R., & Ye, F. (2008). A proposal for a dynamic h-type index. Journal of the American Society for Information Science and Technology 59, 1853–1855.CrossRefGoogle Scholar
  21. Ruane, F., & Tol, R. (2008). Rational (successive) h-indices: An application to economics in the Republic of Ireland. Scientometrics 75, 395–405.CrossRefGoogle Scholar
  22. Schreiber, M. (2009). A case study of the modified Hirsch index h m accounting for multiple coauthors. Journal of the American Society for Information Science and Technology 60, 1274–1282CrossRefGoogle Scholar
  23. Sekercioglu, C. H. (2008). Quantifying coauthor contributions. Science 322, 371–371.CrossRefGoogle Scholar
  24. Sidiropoulos, A., Katsaros, D., & Manolopoulos, Y. (2007). Generalized Hirsch h-index for disclosing latent facts in citation networks. Scientometrics 72, 253–280Google Scholar
  25. Van Eck, N. J., & Waltman, L. (2008). Generalizing the h- and g-indices. Journal of Informetrics 2, 263–271.CrossRefGoogle Scholar
  26. Van Raan, A. F. J. (2006). Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics 67, 491–502.Google Scholar
  27. Zhang, C. T. (2009). A proposal for calculating weighted citations based on author rank. EMBO Reports 10, 416–417.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations