, Volume 84, Issue 2, pp 441–464 | Cite as

How accurately does Thomas Kuhn’s model of paradigm change describe the transition from the static view of the universe to the big bang theory in cosmology?

A historical reconstruction and citation analysis
  • Werner Marx
  • Lutz BornmannEmail author


Up to the 1960s the prevalent view of science was that it was a step-by-step undertaking in slow, piecemeal progression towards truth. Thomas Kuhn argued against this view and claimed that science always follows this pattern: after a phase of “normal” science, a scientific “revolution” occurs. Taking as a case study the transition from the static view of the universe to the Big Bang theory in cosmology, we appraised Kuhn’s theoretical approach by conducting a historical reconstruction and a citation analysis. As the results show, the transition in cosmology can be linked to many different persons, publications, and points in time. The findings indicate that there was not one (short term) scientific revolution in cosmology but instead a paradigm shift that progressed as a slow, piecemeal process.


Thomas Kuhn Paradigm Historical reconstruction Cosmology Bibliometrics Citation analysis 



The authors wish to express their gratitude to the reviewer for his helpful comments. We thank Armin Burkhardt, Karl Syassen (both Max Planck Institute for Solid State Research, Stuttgart, Germany), Hermann Nicolai, Stefan Theisen (both Max Planck Institute for Gravitational Physics, Golm, Germany), and Klaus Hentschel (University of Stuttgart) for careful and critical reading.


  1. Abt, H. A. (1995). Some statistical highlights of the Astrophysical Journal. Astrophysical Journal, 455(2), 407–411.CrossRefGoogle Scholar
  2. Abt, H. (2000). Do important papers produce high citation counts? Scientometrics, 48(1), 65–70.CrossRefGoogle Scholar
  3. Alpher, R. A. (1948). Evolution of the universe. Nature, 162, 774–775.CrossRefGoogle Scholar
  4. Alpher, R. A., Bethe, H., & Gamow, G. (1948). The origin of chemical elements. Physical Review, 73, 803–804.CrossRefGoogle Scholar
  5. Alpher, R. A., & Herman, R. C. (1949). Remarks on the evolution of the expanding universe. Physical Review, 75, 1089–1095.zbMATHCrossRefGoogle Scholar
  6. Andersen, H., & Evans, J. A. (2009). A cycle of tradition and innovation. Science, 323(5910), 37.CrossRefGoogle Scholar
  7. Boghossian, P. A. (2006). Fear of knowledge: Against relativism and constructivism. Oxford, UK: Clarendon.Google Scholar
  8. Bondi, H., & Gold, T. (1948). The steady-state theory of the expanding universe. Monthly Notices of the Royal Astronomical Society, 108(3), 252–270.zbMATHGoogle Scholar
  9. Bornmann, L., & Daniel, H.-D. (2008a). Functional use of frequently and infrequently cited articles in citing publications. A content analysis of citations to articles with low and high citation counts. European Science Editing, 34(2), 35–38.Google Scholar
  10. Bornmann, L., & Daniel, H.-D. (2008b). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45–80.CrossRefGoogle Scholar
  11. Bornmann, L., & Daniel, H.-D. (2009). Universality of citation distributions. A validation of Radicchi et al.’s relative indicator c f = c/c 0 at the micro level using data from chemistry. Journal of the American Society for Information Science and Technology, 60(8), 1664–1670.CrossRefGoogle Scholar
  12. Cardona, M., & Marx, W. (2008). Max Planck—a conservative revolutionary. Il Nuovo Saggiatore, 24(5–6), 39–54.Google Scholar
  13. Charlton, B. G. (2007). Measuring revolutionary biomedical science 1992–2006 using Nobel prizes, Lasker (clinical medicine) awards and Gairdner awards (NLG metric). Medical Hypotheses, 69(1), 1–5.CrossRefGoogle Scholar
  14. Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3(3), 191–209.CrossRefGoogle Scholar
  15. Cole, S. (1992). Making science. Between nature and society. Cambridge, MA, USA: Harvard University Press.Google Scholar
  16. Crane, D. (1980). An exploratory study of Kuhnian paradigms in theoretical high energy physics. Social Studies of Science, 10(1), 23–54.CrossRefGoogle Scholar
  17. Davis, P. M. (2009). Reward or persuasion? The battle to define the meaning of a citation. Learned Publishing, 22(1), 5–11.CrossRefGoogle Scholar
  18. de Sitter, W. (1917). On Einstein’s theory of gravitation, and its astronomical consequences. Monthly Notices of the Royal Astronomical Society, 78(1), 3–28.Google Scholar
  19. de Solla Price, D. J. (1965). Little science, big science. New York, NY, USA: Columbia University Press.Google Scholar
  20. Dewitt, T. W., Nicholson, R. S., & Wilson, M. K. (1980). Science citation index and chemistry. Scientometrics, 2(4), 265–275.CrossRefGoogle Scholar
  21. Dicke, R. H., Peebles, P. J. E., Roll, P. G., & Wilkinson, D. T. (1965). Cosmic black-body radiation. Astrophysical Journal, 142(1), 414–419.CrossRefGoogle Scholar
  22. Einstein, A. (1905a). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [Generation and conversion of light with regard to a heuristic point of view]. Annalen der Physik, 17(6), 132–148.CrossRefGoogle Scholar
  23. Einstein, A. (1905b). Zur Elektrodynamik bewegter Körper [On the electrodynamics of moving bodies]. Annalen der Physik, 17(5), 891–921.CrossRefMathSciNetGoogle Scholar
  24. Einstein, A. (1915). Über die allgemeine Relativitätstheorie (plus addendum). Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Die Feldgleichungen der Gravitation [On the general theory of relativity (addendum). Explanation of the perihelion motion of Mercury from the general theory of relativity. The field equations of gravitation]. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Part 2, 778–847.Google Scholar
  25. Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie [The foundation of the general theory of relativity]. Annalen der Physik, 49(7), 769–822.CrossRefGoogle Scholar
  26. Einstein, A. (1917). Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie [Cosmological considerations on the general theory of relativity]. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Part, 1, 142–152.Google Scholar
  27. Feist, G. J. (2006). The psychology of science and the origins of the scientific mind. New Haven, CT, USA: Yale University Press.Google Scholar
  28. Friedmann, A. (1922). Über die Krümmung des Raumes [On the curvature of space]. Zeitschrift für Physik, 10, 377–386.CrossRefGoogle Scholar
  29. Friedmann, A. (1924). Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes [On the possibility of a world with constant negative curvature]. Zeitschrift für Physik, 21, 326–332.CrossRefMathSciNetGoogle Scholar
  30. Garfield, E., Sher, I. H., & Torpie, R. J. (1964). The use of citation data in writing the history of science. Philadelphia, PA, USA: Institute for Scientific Information.Google Scholar
  31. Giere, R. N. (2006). Scientific perspectivism. Chicago, IL, USA: University of Chicago Press.Google Scholar
  32. Gieryn, T. F. (1995). Boundaries of science. In S. Jasanoff, G. E. Markle, J. C. Petersen, & T. Pinch (Eds.), Handbook of science and technology studies (pp. 393–443). London, UK: Sage.Google Scholar
  33. Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2), 347–356.CrossRefMathSciNetGoogle Scholar
  34. Hentschel, K. (2005a). Einstein und die Lichtquantenhypothese – Die stufenweise Anreicherung der Bedeutungsschichten von “Lichtquanten” (Teil I) [Einstein and the light quantum hypothesis – The stepwise enrichment of layers of meaning of the concept “light quanta” (Part I)]. Naturwissenschaftliche Rundschau, 58(6), 311–319.Google Scholar
  35. Hentschel, K. (2005b). Einstein und die Lichtquantenhypothese – Die stufenweise Anreicherung der Bedeutungsschichten von “Lichtquanten” (Teil II) [Einstein and the light quantum hypothesis – The stepwise enrichment of layers of meaning of the concept “light quanta” (Part II)]. Naturwissenschaftliche Rundschau, 58(7), 363–371.Google Scholar
  36. Hentschel, K. (2006). Light quanta: The maturing of a concept by the stepwise accretion of meaning. Physics & Philosophy, 1, Paper No. 6.Google Scholar
  37. Hertzsprung, E. (1913). Über die räumliche Verteilung der Veränderlichen vom delta Cephei-Typus. Astronomische Nachrichten, 196, 201–208.Google Scholar
  38. Hoyle, F. (1948). A new model for the expanding universe. Monthly Notices of the Royal Astronomical Society, 108(5), 372–382.zbMATHGoogle Scholar
  39. Hoyle, F. (1949). On the cosmological problem. Monthly Notices of the Royal Astronomical Society, 109(3), 365–371.zbMATHGoogle Scholar
  40. Hubble, E. (1925). NGC 6822, a remote stellar system. Astrophysical Journal, 62, 409–433.CrossRefGoogle Scholar
  41. Hubble, E. (1926). Extra-galactic nebulae. Astrophysical Journal, 64, 321–369.CrossRefGoogle Scholar
  42. Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences of the USA, 15, 168–173.zbMATHCrossRefGoogle Scholar
  43. Hubble, E., & Humason, M. (1931). The velocity-distance relation of extra-galactic nebulae. Astrophysical Journal, 74, 43–80.CrossRefGoogle Scholar
  44. Jansky, K. (1933). Radio waves from outside the solar system. Nature, 132, 66.CrossRefGoogle Scholar
  45. Kuhn, T. S. (1962a). Historical structure of scientific discovery. Science, 136(3518), 760–764.CrossRefGoogle Scholar
  46. Kuhn, T. S. (1962b). The structure of scientific revolutions. Chicago, IL, USA: University of Chicago Press.Google Scholar
  47. Kuukkanen, J.-M. (2007). Kuhn, the correspondence theory of truth and coherentist epistemology. Studies in History and Philosophy of Science Part A, 38(3), 555–566.CrossRefGoogle Scholar
  48. Leavitt, H. S. (1912). Periods of 25 variable stars in the small Magellanic cloud. Harvard College Observatory Circular, 173, 1–3.Google Scholar
  49. Lemaitre, G. (1927). Un univers homogene de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nebuleuses extra-galactiques [A homogeneous universe of constant mass and increasing radius]. Annales Societe Sciences Bruxelle, A47, 49–59.Google Scholar
  50. Lemaitre, G. (1931). The beginning of the world from the point of view of quantum theory. Nature, 127, 706.CrossRefGoogle Scholar
  51. Lokker, C., McKibbon, K. A., McKinlay, R. J., Wilczynski, N. L., & Haynes, R. B. (2008). Prediction of citation counts for clinical articles at two years using data available within three weeks of publication: Retrospective cohort study. British Medical Journal, 336(7645), 655–657.CrossRefGoogle Scholar
  52. Lucio-Arias, D., & Leydesdorff, L. (2009). The dynamics of exchanges and references among scientific texts, and the autopoiesis of discursive knowledge. Journal of Informetrics, 3.Google Scholar
  53. Lundmark, K. (1924). The determination of the curvature of space-time in de Sitter’s world. Monthly Notes of the Royal Astronomical Society, 84, 747–770.Google Scholar
  54. Marris, E., Pearson, H., Waldrop, M., Hayden, E. C., Schiermeier, Q., Baker, M., et al. (2008). Language: Disputed definitions [News Feature]. Nature, 455, 1023–1028.CrossRefGoogle Scholar
  55. Marx, W., & Cardona, M. (2009). The citation impact outside references—formal versus informal citations. Scientometrics, 80(1), 1–21.CrossRefGoogle Scholar
  56. Masterman, M. (1970). The nature of a paradigm. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge. Proceedings of the international colloquium in the philosophy of Science, London, 1965 (Vol. 4, pp. 59–89). Cambridge, UK: Cambridge University Press.Google Scholar
  57. Mayoral de Lucas, J. V. (2009). Intensions, belief and science: Kuhn’s early philosophical outlook (1940–1945). Studies in History and Philosophy of Science Part A, 40(2), 175–184.CrossRefGoogle Scholar
  58. Merton, R. K. (1957). Priorities in scientific discovery: A chapter in the sociology of science. American Sociological Review, 22(6), 635–659.CrossRefGoogle Scholar
  59. Merton, R. K. (1965). On the shoulders of giants: A Shandean postscript. New York, NY: Free Press.Google Scholar
  60. Merton, R. K. (1968). Social theory and social structure. New York, NY, USA: Free Press.Google Scholar
  61. Moravcsik, M. J., & Murugesan, P. (1979). Citation patterns in scientific revolutions. Scientometrics, 1(2), 161–169.CrossRefGoogle Scholar
  62. Morris, S. A. (2005). Manifestation of emerging specialties in journal literature: A growth model of papers, references, exemplars, bibliographic coupling, cocitation, and clustering coefficient distribution. Journal of the American Society for Information Science and Technology, 56(12), 1250–1273.CrossRefGoogle Scholar
  63. Nussbaumer, H., & Bieri, L. (2009). Discovering the expanding universe. Cambridge, MA, USA: Cambridge University Press.Google Scholar
  64. Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080MC/S. Astrophysical Journal, 142(1), 419.CrossRefGoogle Scholar
  65. Priester, W., & Schaaf, R. (1987). Carl Wirtz und die Flucht der Spiralnebel [Carl Wirtz and the escape of the spiral nebulae]. Sterne und Weltraum, 7–8, 376–377.Google Scholar
  66. Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105(45), 17268–17272.CrossRefGoogle Scholar
  67. Ryle, M., & Clarke, R. W. (1961). An examination of the steady-state model in the light of some recent observations of radio sources. Monthly Notices of the Royal Astronomical Society, 122(4), 349–362.Google Scholar
  68. Shimp, C. P. (2004). Scientific peer review: A case study from local and global analyses. Journal of the Experimental Analysis of Behavior, 82(1), 103–116.CrossRefGoogle Scholar
  69. Silk, J. (1980). The big bang – the creation and evolution of the universe. San Francisco, CA. USA: W.H. Freeman and Company.Google Scholar
  70. Singh, S. (2004). Big Bang: The most important scientific discovery of all time and why you need to know about it. New York, NY, USA: Fourth Estate Ltd.Google Scholar
  71. Slipher, V. M. (1912). The radial velocity of the Andromeda Nebula. Lowell Observatory Bulletin, 58, 56–57.Google Scholar
  72. Slipher, V. M. (1917). Nebulae. Proceedings of the American Philosophical Society, 56, 403–409.Google Scholar
  73. Smith, L. C. (1981). Citation analysis. Library Trends, 30(1), 83–106.Google Scholar
  74. Smoot, G. F., Bennett, C. L., Kogut, A., Wright, E. L., Aymon, J., Boggess, N. W., et al. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophysical Journal, 396(1), L1–L6.CrossRefGoogle Scholar
  75. Tabah, A. N. (1999). Literature dynamics: Studies on growth, diffusion, and epidemics. Annual Review of Information Science and Technology, 34, 249–286.Google Scholar
  76. van Raan, A. F. J. (2005). Measurement of central aspects of scientific research: Performance, interdisciplinarity, structure. Measurement, 3(1), 1–19.Google Scholar
  77. Wirtz, C. (1921). Einiges zur Statistik der Radialbewegungen von Spiralnebeln und Kugelsternhaufen [On the statistics of the radial motions of spiral nebulae and globular star clusters]. Astronomische Nachrichten, 215, 350–354.CrossRefGoogle Scholar
  78. Wirtz, C. (1924). De Sitters Kosmologie und die Radialbewegungen der Spiralnebel [De Sitter’s cosmology and the radial motions of the spiral nebulae]. Astronomische Nachrichten, 222, 22–26.Google Scholar
  79. Wright, E. L., Meyer, S. S., Bennett, C. L., Boggess, N. W., Cheng, E. S., Hauser, M. G., et al. (1992). Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE differential microwave radiometer. Astrophysical Journal, 396(1), L13–L18.CrossRefGoogle Scholar
  80. Ziman, J. (2000). Real science. What it is, and what it means. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Max Planck Institute for Solid State ResearchStuttgartGermany
  2. 2.Professorship for Social Psychology and Research on Higher EducationZurichSwitzerland

Personalised recommendations