, Volume 82, Issue 2, pp 263–287 | Cite as

Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience

  • Ismael RafolsEmail author
  • Martin Meyer


The multidimensional character and inherent conflict with categorisation of interdisciplinarity makes its mapping and evaluation a challenging task. We propose a conceptual framework that aims to capture interdisciplinarity in the wider sense of knowledge integration, by exploring the concepts of diversity and coherence. Disciplinary diversity indicators are developed to describe the heterogeneity of a bibliometric set viewed from predefined categories, i.e. using a top-down approach that locates the set on the global map of science. Network coherence indicators are constructed to measure the intensity of similarity relations within a bibliometric set, i.e. using a bottom-up approach, which reveals the structural consistency of the publications network. We carry out case studies on individual articles in bionanoscience to illustrate how these two perspectives identify different aspects of interdisciplinarity: disciplinary diversity indicates the large-scale breadth of the knowledge base of a publication; network coherence reflects the novelty of its knowledge integration. We suggest that the combination of these two approaches may be useful for comparative studies of emergent scientific and technological fields, where new and controversial categorisations are accompanied by equally contested claims of novelty and interdisciplinarity.


Interdisciplinary research Nanotechnology Nanoscience Diversity Indicators Network analysis 



This research was supported by an EU postdoctoral Marie-Curie Fellowship to IR, and the Daiwa Anglo-Japanese Foundation. We benefited from discussions with J. Gläser, L. Leydesdorff, F. Morillo, A.L. Porter, and SPRU colleagues S. Katz, R. Kempener, W.E. Steinmueller and A. Stirling.


  1. Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirement for a cocitation similarity measure, with special reference to Pearson’s Correlation Coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550–560.CrossRefGoogle Scholar
  2. Barjak, F. (2006). Team diversity and research collaboration in life sciences teams: Does a combination of research cultures pay off?. Olten, Switzerland: University of Applied Sciences Northwestern.Google Scholar
  3. Batagelj, V., & Mrvar, A. (2008). Pajek. Program for large network analysis. Accessed 15-01-2008.
  4. Bordons, M., Morillo, F., & Gómez, I. (2004). Analysis of cross-disciplinary research through bibliometric tools. In: H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 437–456). Dordrecht: Kluwer.Google Scholar
  5. Bourke, P., & Butler, L. (1998). Institutions and the map of science: Matching university departments and fields of research. Research Policy, 26, 711–718.CrossRefGoogle Scholar
  6. Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.CrossRefGoogle Scholar
  7. Braam, R. R., Moed, H. F., & van Raan, A. F. J. (1991). Mapping of science by combined co-citation and word analysis I. Structural aspects. Journal of the American Society for Information Science, 42(4), 233–251.CrossRefGoogle Scholar
  8. Egghe, L., & Rousseau, R. (2003). A measure for the cohesion of weighted networks. Journal of the American Society for Information Science and Technology, 54(3), 193–202.CrossRefMathSciNetGoogle Scholar
  9. Havemann, F., Heinz, M., Schmidt, M., & Glaser, J. (2007). Measuring diversity of research in bibliographic-coupling networks. In: Torres-Salinas & H. Moed (Eds.), 11th International conference of the international society for scientometrics and informetrics (pp. 860–861). Madrid.Google Scholar
  10. Hellsten, I., Lambiotte, R., Scharnhorst, A., & Ausloos, M. (2007). Self-citation, co-authorships and keywords: A new approach to scientists’ field mobility? Scientometrics, 72(3), 469–486.CrossRefGoogle Scholar
  11. Hollingsworth, J. R. (2006). A path-dependent perspective on institutional and organizational factors shaping major scientific discoveries. In: J. Hage & M. Meeus (Eds.), Innovation, science, and institutional change (pp. 423–442). Oxford: Oxford University Press.Google Scholar
  12. Kiss, I. Z., Broom, M., Craze, P., & Rafols, I. (submitted). Can epidemic model describe the diffusion of topics across disciplines? Available at
  13. Klavans, R., & Boyack, K. (2008). A map of science. Retrieved on January 30th 2008, from
  14. Klein, J. T. (2000). A conceptual vocabulary of interdisciplinary science. In: P. Weingart & N. Stehr (Eds.), Practising interdisciplinarity (pp. 3–24). Toronto: University of Toronto Press.Google Scholar
  15. Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303–1319.CrossRefGoogle Scholar
  16. Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362. CrossRefGoogle Scholar
  17. Leydesdorff, L., & Zhou, P. (2007). Nanotechnology as a field of science: Its delineation in terms of journals and patents. Scientometrics, 70(3), 693–713.CrossRefGoogle Scholar
  18. Meyer, M., & Persson, O. (1998). Nanotechnology–Interdisciplinarity, patterns of collaboration and differences in application. Scientometrics, 42, 195–205.CrossRefGoogle Scholar
  19. Morillo, F., Bordons, M., & Gomez, I. (2001). An approach to interdisciplinarity through bibliometric indicators. Scientometrics, 51(1), 203–222.CrossRefGoogle Scholar
  20. Morillo, F., Bordons, M., & Gómez, I. (2003). Interdisciplinarity in science: A tentative typology of disciplines and research areas. Journal of the American Society for Information Science and Technology, 54(13), 1237–1249.CrossRefGoogle Scholar
  21. Moya-Anegón, F. de, Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F. J., & Herrero-Solana, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58(14), 2167–2179.CrossRefGoogle Scholar
  22. Moya-Anegón, F., Vargas-Quesada, B., Herrero-Solana, V., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., & Munoz-Fernández, F. J. (2004). A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics, 61(1), 129–145.CrossRefGoogle Scholar
  23. National Academies. (2005). Facilitating interdisciplinary research. Washington, DC: National Academies Press.Google Scholar
  24. Nesta, L., & Saviotti, P. P. (2005). Coherence of the knowledge base and the firm’s innovative performance: Evidence from the U.S. pharmaceutical industry. Journal of Industrial Economics, 8(1), 123–142.CrossRefGoogle Scholar
  25. Otte, E., & Rousseau, R. (2002). Social network analysis: A powerful strategy, also for the information sciences. Journal of Information Science, 28(6), 441–453.CrossRefGoogle Scholar
  26. Persson, O. (2008) Bibexcel. A tool-box programme for bibliometric analysis. Accessed 01-02-2008.
  27. Porter, A. L., & Chubin, D. E. (1985). An indicator of cross-disciplinary research. Scientometrics, 8, 161–176.CrossRefGoogle Scholar
  28. Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.CrossRefGoogle Scholar
  29. Porter, A. L., Roessner, J. D., Cohen, A. S., & Perreault, M. (2006). Interdiscipinary research: Meaning, metrics and nurture. Research Evaluation, 15, 187–196.CrossRefGoogle Scholar
  30. Purvis, A., & Hector, A. (2000). Getting the measure of biodiversity. Nature, 405, 212–219.CrossRefGoogle Scholar
  31. R Development Core Team. (2007). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  32. Rafols, I. (2007). Strategies for knowledge acquisition in bionanotechnology: Why are interdisciplinary practices less widespread than expected? Innovation; The European Journal of Social Sciences, 20(4), 395–412.CrossRefGoogle Scholar
  33. Rafols, I., & Leydesdorff, L. (2009). Content-based and algorithmic classifications of journals: Perspectives on the dynamics of scientific communication and indexer effects. Journal of the American Society for Information Science and Technology. doi: 10.1002/asi.21086.
  34. Rafols, I., & Meyer, M. (2007). How cross-disciplinary is bionanotechnology? Explorations in the specialty of molecular motors. Scientometrics, 70(3), 633–650.CrossRefGoogle Scholar
  35. Rao, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21, 24–43.zbMATHCrossRefMathSciNetGoogle Scholar
  36. Rousseau, R. (2000). Concentration and evenness measures as macro-level scientometric indicators. In: J. Gua-hua (Ed.), Research and university evaluation (pp. 72–89). Beijing: Red Flag Publishing House. (In Chinese).Google Scholar
  37. Sanz-Menéndez, L., Bordons, M., & Zulueta, M. A. (2001). Interdisciplinarity as a multidimensional concept: Its measure in three different research areas. Research Evaluation, 10(1), 47–58.CrossRefGoogle Scholar
  38. Scharnhorst, A. (1998). Citation-networks, science landscapes and evolutionary strategies. Scientometrics, 43(1), 95–106.CrossRefMathSciNetGoogle Scholar
  39. Schmidt, M., Gläser, J., Havemann, F., & Heinz, M. (2006). A methodological study for measuring the diversity of science. In: Proceedings international workshop on webometrics, informetrics and scientometrics & seventh COLLNET meeting, Nancy (France).Google Scholar
  40. Schummer, J. (2004). Multidisciplinarity, Interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59, 425–465.CrossRefGoogle Scholar
  41. Small, H. G. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269.CrossRefGoogle Scholar
  42. Small, H. G. (1977). A co-citation model of a scientific specialty: A longitudinal study of collagen research. Social studies of science, 7(2), 139–166.CrossRefGoogle Scholar
  43. Stirling, A. (1998). On the economics and analysis of diversity. SPRU Electronic Working Paper. Accessed 01-04-2006.
  44. Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4(15), 707–719.CrossRefGoogle Scholar
  45. van den Besselaar, P., & Heimeriks, G. (2001). Disciplinary, multidisciplinary, interdisciplinary: Concepts and indicators. In: M. Davis & C. S. Wilson (Eds.), Proceedings of the 8th international conference on scientometrics and informetrics—ISSI 2001 (pp. 705–716). Sydney: University of New South-Wales.Google Scholar
  46. van den Besselaar, P., & Leydesdorff, L. (1994). Mapping change in scientific specialties: A scientometric reconstruction of the development of Artificial intelligence. Journal of the American Society for Information Science, 47(6), 415–436.CrossRefGoogle Scholar
  47. van Leeuwen, T., & Tijssen, R. (2000). Interdisciplinary dynamics of modern science: Analysis of cross-disciplinary citation flows. Research Evaluation, 9(3), 183–187.CrossRefGoogle Scholar
  48. van Raan, A. F. J., & van Leeuwen, T. (2002). Assessment of the scientific basis of interdisciplinarity, applied research. Application of bibliometric methods in Nutrition and Food Research. Research Policy, 31, 611–632.CrossRefGoogle Scholar
  49. Weingart, P., & Stehr, N. (Eds.). (2000). Practising interdisciplinarity. Toronto: University of Toronto Press.Google Scholar
  50. Zitt, M. (2005). Facing diversity of science: A challenge for bibliometric indicators. Measurement, 3(1), 38–49.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.SPRU-Science and Technology Policy ResearchUniversity of SussexBrightonUK
  2. 2.Steunpunt O&O StatistiekenKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Helsinki University of TechnologyHelsinkiFinland

Personalised recommendations