Advertisement

Scientometrics

, Volume 82, Issue 2, pp 413–418 | Cite as

More axiomatics for the Hirsch index

  • Antonio Quesada
Article

Abstract

The Hirsch index is a number that synthesizes a researcher’s output. It is defined as the maximum number h such that the researcher has h papers with at least h citations each. Woeginger (Math Soc Sci 56: 224–232, 2008a; J Informetr 2: 298–303, 2008b) suggests two axiomatic characterizations of the Hirsch index using monotonicity as one of the axioms. This note suggests three characterizations without adopting the monotonicity axiom.

Keywords

Hirsch index Axiomatic characterization Publications Citations Research quality 

Notes

Acknowledgements

Financial support from the Spanish Ministerio de Educación y Ciencia under research project SEJ2007-67580-C02-01 and from the Departament d’Universitats, Recerca i Societat de la Informació (Generalitat de Catalunya) under research project 2005SGR-00949 is gratefully acknowledged. Many thanks to the two reviewers of this paper and to the Editor in Chief, Tibor Braun.

References

  1. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.CrossRefGoogle Scholar
  2. Quesada, A. (2008), Monotonicity and the Hirsch index. Journal of Informetrics (to appear).Google Scholar
  3. Wikipedia (2008), h-index, http://en.wikipedia.org/wiki/Hirsch_index, accessed the 9th of December, 2008.
  4. Woeginger, G. J. (2008a). An axiomatic characterization of the Hirsch-index. Mathematical Social Sciences, 56(2), 224–232.zbMATHCrossRefMathSciNetGoogle Scholar
  5. Woeginger, G. J. (2008b). A symmetry axiom for scientific impact indices. Journal of Informetrics, 2(3), 298–303.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Departament d’EconomiaUniversitat Rovira i VirgiliReusSpain

Personalised recommendations