, Volume 83, Issue 1, pp 243–258 | Cite as

A comparison of bibliometric indicators for computer science scholars and journals on Web of Science and Google Scholar

  • Massimo Franceschet


Given the current availability of different bibliometric indicators and of production and citation data sources, the following two questions immediately arise: do the indicators’ scores differ when computed on different data sources? More importantly, do the indicator-based rankings significantly change when computed on different data sources? We provide a case study for computer science scholars and journals evaluated on Web of Science and Google Scholar databases. The study concludes that Google scholar computes significantly higher indicators’ scores than Web of Science. Nevertheless, citation-based rankings of both scholars and journals do not significantly change when compiled on the two data sources, while rankings based on the h index show a moderate degree of variation.


Bibliometric indicators h Index Publication and citation data sources Correlation analysis 


  1. Anderson, T. R., Hankin, R. K. S., & Killworth, P. D. (2008). Beyond the Durfee square: Enhancing the h-index to score total publication output. Scientometrics, 76(3), 577–588.CrossRefGoogle Scholar
  2. Bakkalbasi, N., Bauer, K., Glover, J., & Wang, L. (2006). Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomedical Digital Libraries, 7. Retrieved December 20, 2008, from
  3. Bar-Ilan, J. (2008). Which h-index? A comparison of WoS, Scopus and Google Scholar. Scientometrics, 74(2), 257–271.CrossRefGoogle Scholar
  4. Bar-Ilan, J., Levene, M., & Lin, A. (2007). Some measures for comparing citation databases. Journal of Informetrics, 1(1), 26–34.CrossRefGoogle Scholar
  5. Batista, P. D., Campiteli, M. G., & Konouchi, O. (2006). Is it possible to compare researchers with different scientific interests? Scientometrics, 68(1), 179–189.CrossRefGoogle Scholar
  6. Bauer, K. & Bakkalbasi, N. (2005). An examination of citation counts in a new scholarly communication environment. D-Lib Magazine, 11(9). Retrieved December 20, 2008, from
  7. Bollen, J., Rodriguez, M. A., & de Sompel, H. V. (2006). Journal status. Scientometrics, 69(3), 669–687.CrossRefGoogle Scholar
  8. Bornmann, L., & Daniel, H.-D. (2007). What do we know about the h index? Journal of the American Society for Information Science and Technology, 58(9), 1381–1385.CrossRefGoogle Scholar
  9. Bornmann, L., Marx, W., Schier, H., Rahm, E., Thor, A., & Daniel, H.-D. (2009). Convergent validity of bibliometric Google Scholar data in the field of chemistry citation counts for papers that were accepted by Angewandte Chemie International Edition or rejected but published elsewhere, using Google Scholar, Science Citation Index, Scopus, and Chemical Abstracts. Journal of Informetrics, 3(1), 27–35.CrossRefGoogle Scholar
  10. Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics, 69(1), 169–173.CrossRefGoogle Scholar
  11. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1–7), 107–117.CrossRefGoogle Scholar
  12. Choppy, C., van Leeuwen, J., Meyer, B., & Staunstrup, J. (2009). Research evaluation for computer science. Communications of the ACM, 54(4), 31–34.Google Scholar
  13. Computing Research Association (1999). Best practices memo—evaluating computer scientists and engineers for promotion and tenure. Computing Research News. Retrieved December 20, 2008, from
  14. Egghe, L. (2006). Theory and practice of the g-index. Scientometrics, 69(1), 131–152.CrossRefMathSciNetGoogle Scholar
  15. Garfield, E. (1979). Citation indexing: Its history and applications in science, technology and humanities. New York: Wiley.Google Scholar
  16. Goodrum, A. A., McCain, K. W., Lawrence, S., & Giles, C. L. (2001). Scholarly publishing in the internet age: A citation analysis of computer science literature. Information Processing & Management, 37(5), 661–675.zbMATHCrossRefGoogle Scholar
  17. Harold, E. R. & Means, W. S. (2004). XML in a nutshell (3rd ed.). Sebastopol: O’Reilly.Google Scholar
  18. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Science of the United States of America, 102(46):16569–16572.Google Scholar
  19. Jacsò, P. (2005). As we may search. Comparison of major features of the Web of Science, Scopus, and Google Scholar citation-based and citation-enhanced databases. Current Science, 89(9):1537–1547. Retrieved December 20, 2008, from
  20. Katsaros, C., Manolopoulos, Y., and Sidiropoulos, A. (2006). Generalized h-index for disclosing latent facts in citation networks. Retrieved December 20, 2008, from
  21. Kousha, K., & Thelwall, M. (2007). Google scholar citations and Google Web/URL citations: A multi-discipline exploratory analysis. Journal of the American Society for Information Science and Technology, 58(7), 1055–1065.CrossRefGoogle Scholar
  22. Kousha, K., & Thelwall, M. (2008). Sources of Google Scholar citations outside the Science Citation Index: A comparison between four science disciplines. Scientometrics, 74(2), 273–294.CrossRefGoogle Scholar
  23. Meho, L. I., & Rogers, Y. (2008). Citation counting, citation ranking, and h-index of human-computer interaction researchers: A comparison between Scopus and Web of Science. Journal of the American Society for Information Science and Technology, 59(11), 1711–1726.CrossRefGoogle Scholar
  24. Meho, L. I., & Yang, K. (2007). Impact of data sources on citation counts and rankings of LIS faculty: Web of Science vs Scopus and Google Scholar. Journal of the American Society for Information Science and Technology, 58(13), 2105–2125.CrossRefGoogle Scholar
  25. Moore, D. (2006). Basic practice of statistics (4th ed.). New York: WH Freeman Company.Google Scholar
  26. Norris, M., & Oppenheim, C. (2007). Comparing alternatives to the Web of Science for coverage of the social sciences literature. Journal of Informetrics, 1(2), 161–169.CrossRefGoogle Scholar
  27. Noruzi, A. (2005). Google Scholar: The new generation of citation indexes. Libri, 55(4), 170–180.CrossRefGoogle Scholar
  28. Pauly, D. & Stergiou, K. I. (2005). Equivalence of results from two citation analyses: Thomson ISI citation index and Google scholar service. Ethics in Science and Environmental Politics, 33–35.Google Scholar
  29. Saad, G. (2006). Exploring the h-index at the author and journal levels using bibliometric data of productive consumer scholars and business-related journals respectively. Scientometrics, 69(1), 117–120.CrossRefGoogle Scholar
  30. Sanderson, M. (2008). Revisiting h measured on UK LIS academics. Journal of the American Society for Information Science and Technology, 59(7), 1184–1190.CrossRefGoogle Scholar
  31. Shaw, D., & Vaughan, L. (2008). A new look at evidence of scholarly citation in citation indexes and from web sources. Scientometrics, 74(2), 317–330.CrossRefGoogle Scholar
  32. R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.Google Scholar
  33. Weingart, P. (2005). Impact of bibliometrics upon the science system: Inadvertent consequences? Scientometrics, 62(1), 117–131.CrossRefGoogle Scholar
  34. Whitley, K. M. (2002). Analysis of SciFinder Scholar and Web of Science citation searches. Journal of the American Society for Information Science and Technology, 53(14), 1210–1215.CrossRefGoogle Scholar
  35. Zhao, D. Z., & Logan, E. (2002). Citation analysis using scientific publications on the web as data source: A case study in the XML research area. Scientometrics, 54(3), 449–472.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly

Personalised recommendations