, 81:617 | Cite as

A geometric approach to the construction of scientific impact indices

  • Marek Gągolewski
  • Przemysław Grzegorzewski


Two broad classes of scientific impact indices are proposed and their properties - both theoretical and practical — are discussed. These new classes were obtained as a geometric generalization of the well-known tools applied in scientometric, like Hirsch’s h-index, Woeginger’s w-index and the Kosmulski’s Maxprod. It is shown how to apply the suggested indices for estimation of the shape of the citation function or the total number of citations of an individual. Additionally, a new efficient and simple O(log n) algorithm for computing the h-index is given.


Geometric Approach Scientific Impact Impact Index Hirsch Index Citation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. E. Hirsch, An index to quantify individual’s scientific research output, Proceedings of the National Academy of Sciences, 102(46) (2005) 16569–16572.CrossRefGoogle Scholar
  2. 2.
    P. Ball, Index aims for fail ranking of scientists, Nature, 436 (2005) p. 900.CrossRefGoogle Scholar
  3. 3.
    W. Glänzel, On the opportunities and limitations of the H-index, Science Focus, 1(1) (2006) 10–11.Google Scholar
  4. 4.
    A. Proń, H. Szatyłowicz, Habilitacja dodaje „skrzyde?”?, Forum Akademickie, 3 (2006) (In Polish).Google Scholar
  5. 5.
    C. D. Kelly, M. D. Jennions, The h-index and career assessment by numbers, Trends in Ecology and Evolution, 21(4) (2006) 167–170.CrossRefGoogle Scholar
  6. 6.
    L. Bornmann, H. D. Daniel, What do we know about the h-index?, Journal of the American Society for Information Science and Technology, 58(9) (2007) 1381–1385.CrossRefGoogle Scholar
  7. 7.
    M. G. Banks, An extension of the Hirsch index: Indexing scientific topics and compounds, Scientometrics, 69(1) (2006) 161–168.CrossRefGoogle Scholar
  8. 8.
    A. F. J. Van Raan, Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgement for 147 chemistry research groups, Scientometrics, 67(3) (2006) 491–502.Google Scholar
  9. 9.
    J. E. Hirsch, Does the h-index have predictive power?, Proceedings of the National Academy of Sciences, 104(49) (2007) 19193–19198.CrossRefGoogle Scholar
  10. 10.
    Q. L. Burrell, Hirsch index of Hirsch rate? Some thoughts arising from Liang’s data, Scientometrics, 73(1) (2007) 19–28.CrossRefGoogle Scholar
  11. 11.
    M. Schreiber, A case study of Hirsch index for 26 non-prominent physicists, Ann. Phys., 16(9) (2007) 640–652.CrossRefGoogle Scholar
  12. 12.
    R. Costas, M. Bordons, Is g-index better than h-index? An exploratory study at the individual level, Scientometrics, 77(2) (2008) 267–288.CrossRefGoogle Scholar
  13. 13.
    L. I. Meho, Y. Rogers, Citation counting, citation ranking, and h-index of human-computer interaction researchers: A comparison between Scopus and Web of Science, Journal of the American Society for Information Science and Technology, 59(11) (2008) 1711–1726.CrossRefGoogle Scholar
  14. 14.
    W. Glänzel, On the h-index — A mathematical approach to a new measure of publication activity and citation impact, Scientometrics, 67(2) (2006) 315–321.CrossRefGoogle Scholar
  15. 15.
    A. Basu, A note on the connection between the Hirsch index and the Random Hierarchical model, ISSI Newsletter, 3(2) (2007) 24–27.Google Scholar
  16. 16.
    Q. L. Burrell, Hirsch’s h-index: A stochastic model, Journal of Informetrics, 1 (2007) 16–25.CrossRefGoogle Scholar
  17. 17.
    R. Rousseau, The influence of missing publications on the Hirsch index, Journal of Informetrics, 1 (2007) 2.7.CrossRefGoogle Scholar
  18. 18.
    L. Egghe, Time-dependent Lotkaian informetrics incorporating growth of sources and items, Mathematical and Computer Modelling, 45(7–8) (2007) 864–872.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    G. J. Woeginger, An axiomatic characterization of the Hirsch-index, Mathematical Social Sciences, 56(2) (2008) 224–232.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    L. Egghe, An improvement of the h-index: the g-index, ISSI Newsletter, 2(1) (2006) 8–9.MathSciNetGoogle Scholar
  21. 21.
    L. Egghe, Theory and practise of the g-index, Scientometrics, 69(1) (2006) 131–152.CrossRefMathSciNetGoogle Scholar
  22. 22.
    M. Kosmulski, A new Hirsch-type index saves time and works equally well as the original h-index, ISSI Newsletter, 2(3) (2006) 4–6.Google Scholar
  23. 23.
    P. D. Batista, M. G. Campiteli, O. Kinouchi, A. S. Martinez, Is it possible to compare researchers with different scientific interests? Scientometrics, 68(1) (2006) 179–189.CrossRefGoogle Scholar
  24. 24.
    B. Jin, L. Liang, R. Rousseau, L. Egghe, The R- and AR-indices: Complementing the h-index, Chinese Science Bulletin, 52(6) (2007) 855–863.CrossRefGoogle Scholar
  25. 25.
    A. Sidiropoulos, D. Katsaros, Y. Manolopoulos, Generalized h-index for disclosing latent facts in citation networks, Scientometrics, 72(2) (2007) 253–280.CrossRefGoogle Scholar
  26. 26.
    G. J. Woeginger, An axiomatic analysis of Egghe’s g-index, Journal of Informetrics, (2008) In press, doi:10.1016/j.joi.2008.05.002.Google Scholar
  27. 27.
    M. Kosmulski, MAXPROD — A new index for assessment of the scientific output of an individual, and a comparison with the h-index, Cybermetrics, 11(1) (2007).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Marek Gągolewski
    • 1
    • 2
  • Przemysław Grzegorzewski
    • 1
    • 2
  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations