Advertisement

Scientometrics

, 81:493 | Cite as

An investigation on mathematical models of the h-index

  • Fred Y. Ye
Article

Abstract

Based on two large data samples from ISI databases, the author evaluated the Hirsch model, the Egghe-Rousseau model, and the Glänzel-Schubert model of the h-index. The results support the Glänzel-Schubert model as a better estimation of the h-index at both journal and institution levels. If h c , h p and h pc stand for the Hirsch estimation, Egghe-Rousseau estimation, and Glänzel-Schubert estimation, respectively, then an inequality h p < hh pc < h c holds in most cases.

Keywords

Institution Level Journal Title Essential Science Indicator Large Data Sample Scientific Research Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Burrell, Q. L. (2007), Hirsch’s h-index: A stochastic model. Journal of Informetrics, 1(1): 16–25.CrossRefGoogle Scholar
  2. Csajbók, E., Berhidi, A., Vasas, L., Schubert, A. (2007), Hirsch-index for countries based on Essential Science Indicators data. Scientometrics, 73(1): 91–117.CrossRefGoogle Scholar
  3. Egghe, L. (2007), Dynamic h-index: the Hirsch index in function of time. Journal of the American Society for Information Science and Technology, 58(3): 452–454.CrossRefGoogle Scholar
  4. Egghe, L., Rousseau, R. (2006), An informetric model for the Hirsch-index. Scientometrics, 69(1): 121–129.CrossRefGoogle Scholar
  5. Glänzel, W. (2006), On the h-index — A mathematical approach to a new measure of publication activity and citation impact. Scientometrics, 67(2): 315–321.CrossRefGoogle Scholar
  6. Hirsch, J. E., An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the USA, 2005, 102(46): 16569–16572.CrossRefGoogle Scholar
  7. Schubert, A., Glänzel, W. (2007), A systematic analysis of Hirsch-type indices for journals. Journal of Informetrics, 1(2): 179–184.CrossRefGoogle Scholar
  8. Ye, F. Y., Rousseau, R. (2008), The power law model and total career h-index sequences. Journal of Informetrics, 4: 288–297.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Dept. Information Resources ManagementZhejiang UniversityHangzhouP. R. China
  2. 2.Institution of Scientific and Technical Information of ChinaBeijingP. R. China

Personalised recommendations