, Volume 80, Issue 1, pp 1–21 | Cite as

The citation impact outside references — formal versus informal citations

  • Werner Marx
  • Manuel Cardona
Open Access


In this study the amount of “informal” citations (i.e. those mentioning only author names or their initials instead of the complete references) in comparison to the “formal” (full reference based) citations is analyzed using some pioneers of chemistry and physics as examples. The data reveal that the formal citations often measure only a small fraction of the overall impact of seminal publications. Furthermore, informal citations are mainly given instead of (and not in addition to) formal citations. As a major consequence, the overall impact of pioneering articles and researchers cannot be entirely determined by merely counting the full reference based citations.


Science Citation Index Citation Impact Quantum Hall Effect Full Reference Formal Citation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. H. MacRoberts, B. R. Macroberts, Problems of citation analysis: A critical review, Journal of the American Society for Information Science New York, 40 (1989) 342–349.CrossRefGoogle Scholar
  2. 2.
    R. K. Merton, Social Theory and Social Structure, Free Press, New York (1968).Google Scholar
  3. 3.
    C. V. Raman, K. S. Krishnan, A new type of secondary radiation, Nature, 121 (1928) 501–502.CrossRefGoogle Scholar
  4. 4.
    C. V. Raman, K. S. Krishnan, A new radiation, Indian Journal of Physics, 2 (1928) 387–398.Google Scholar
  5. 5.
    G. Landsberg, L. Mandelstam, A new occurrence in the light diffusion of crystals, Naturwissenschaften, 16 (1928) 557–558.CrossRefGoogle Scholar
  6. 6.
    A. Smekal, The quantum theory of dispersion, Naturwissenschaften, 11 (1923) 873–875.CrossRefGoogle Scholar
  7. 7.
    L. Brillouin, Light diffusion by a homogeneous transparent body, Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, 158 (1914) 1331–1334.Google Scholar
  8. 8.
    E. Gross, Change of wavelength of light due to elastic heat waves at scattering in liquids, Nature, 126 (1930) 201–202.MATHCrossRefGoogle Scholar
  9. 9.
    J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory of superconductivity, Physical Review, 108 (1957) 1175–1204.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    L. N. Cooper, Bound electron pairs in a degenerate Fermi gas, Physical Review, 104 (1956) 1189–1190.MATHCrossRefGoogle Scholar
  11. 11.
    J. G. Bednorz, K. A. Mueller, Possible high-Tc superconductivity in the Ba-La-Cu-O system, Zeitschrift für Physik B-Condensed Matter, 64 (1986) 189–193.CrossRefGoogle Scholar
  12. 12.
    W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review, 140 (1965) 1133–1138.CrossRefMathSciNetGoogle Scholar
  13. 13.
    E. H. Hall, On a new action of the magnetic on electric currents, American Journal of Mathematics, 2 (1879) 287–292.CrossRefMathSciNetGoogle Scholar
  14. 14.
    K. Von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the finestructure constant based on quantized Hall resistance, Physical Review Letters, 45 (1980) 494–497.CrossRefGoogle Scholar
  15. 15.
    G. E. Moore, Cramming more components onto integrated circuits, Electronics Magazine, 38 (1965) 114–117.Google Scholar
  16. 16.
    E. Schrödinger, The present situation in quantum mechanics I, Naturwissenschaften, 48 (1935) 807–812.CrossRefGoogle Scholar
  17. 17.
    E. Schrödinger, The present situation in quantum mechanics II, Naturwissenschaften, 49 (1935) 823–828.CrossRefGoogle Scholar
  18. 18.
    E. Schrödinger, The present situation in quantum mechanics III, Naturwissenschaften, 50 (1935) 844–849.CrossRefGoogle Scholar
  19. 19.
    G. Wentzel, A generalization of the quantum constraints for the purposes of the wave mechanics, Zeitschrift für Physik, 38 (1926) 518–529.CrossRefGoogle Scholar
  20. 20.
    H. A. Kramers, Wave mechanics and half-integral quantization, Zeitschrift für Physik, 39 (1926) 828–840.CrossRefGoogle Scholar
  21. 21.
    L. Brillouin, The ondulatory mechanics of Schrödinger; A general method of resolution by successive approximations, Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences, 183 (1926) 24–27.Google Scholar
  22. 22.
    H. P. Jeffreys, On certain approximate solutions of linear differential equations of the second order, Proceedings of the London Mathematical Society, 23 (1924) 428–436.CrossRefGoogle Scholar
  23. 23.
    C. Doppler, On the colored light of double stars and certain other stars in the heavens, Abhandlungen der Königlich Böhmischen Gesellschaft der Wissenschaften, 2 (1842) 465–482.Google Scholar
  24. 24.
    H. R. Müller, Diagnosis of internal carotid artery occlusion by directional Doppler sonography of ophthalmic artery, Neurology, 22 (1972) 816–823.Google Scholar
  25. 25.
    G. Green, An essay on the application of mathematical analysis to the theories of electricity and magnetism, Nottingham Subscription Library (1828).Google Scholar
  26. 26.
    H. Dember, A photoelectrical motive energy in copper-oxide crystals, Physikalische Zeitschrift, 32 (1931) 554–556.Google Scholar
  27. 27.
    H. Dember, Forward motion of electrons induced by light, Physikalische Zeitschrift, 33 (1932) 207–208.Google Scholar
  28. 28.
    H. Dember, A crystal photocell, Physikalische Zeitschrift, 32 (1931) 856–858.Google Scholar
  29. 29.
    M. Cardona, W. Marx, The disaster of the Nazi-power in science as reflected by some leading journals and scientists in physics — A bibliometric study, Scientometrics, 64 (2005) 313–324.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Max Planck Institute for Solid State ResearchStuttgartGermany

Personalised recommendations