, 75:495 | Cite as

Population modeling of the emergence and development of scientific fields

  • Luís M. A. BettencourtEmail author
  • David I. Kaiser
  • Jasleen Kaur
  • Carlos Castillo-Chávez
  • David E. Wojick


We analyze the temporal evolution of emerging fields within several scientific disciplines in terms of numbers of authors and publications. From bibliographic searches we construct databases of authors, papers, and their dates of publication. We show that the temporal development of each field, while different in detail, is well described by population contagion models, suitably adapted from epidemiology to reflect the dynamics of scientific interaction. Dynamical parameters are estimated and discussed to reflect fundamental characteristics of the field, such as time of apprenticeship and recruitment rate. We also show that fields are characterized by simple scaling laws relating numbers of new publications to new authors, with exponents that reflect increasing or decreasing returns in scientific productivity.


Influenza Carbon Nanotubes Scientific Field Scrapie H5N1 Influenza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Derek J. de Solla Price, Little Science, Big Science, New York: Columbia University Press, 1963.Google Scholar
  2. 2.
    T. Braun, E. Bujdosó, A. Schubert, The Literature of Analytical Chemistry: A Scientometric Evaluation, Boca Raton, FL: CRC Press, 1987.Google Scholar
  3. 3.
    W. Goffman, V. A. Newill, Generalization of epidemic theory: An application to the transmission of ideas, Nature, 204 (1964) 225–228; W. Goffman, Mathematical approach to the spread of scientific ideas: The history of mast cell research, Nature, 212 (1966) 449–452; W. Goffman, G. Harmon, Mathematical approach to the prediction of scientific discovery, Nature, 229 (1971) 103–104.CrossRefGoogle Scholar
  4. 4.
    E. Garfield, The epidemiology of knowledge and the spread of scientific information, Current Contents, 35 (1980) 5–10.Google Scholar
  5. 5.
    A. N. Tabah, Literature dynamics: Studies of growth, diffusion, and epidemics, Annual Review of Information Science and Technology (ASIS), 34 (1999) 249–286.Google Scholar
  6. 6.
    T. Braun, The epidemic spread of fullerene research, Angew. Chem. Int. Ed. Engl., 31 (1992) 588–589.CrossRefGoogle Scholar
  7. 7.
    M. E. J. Newman, Scientific collaboration networks: I. Network construction and fundamental results, Phys. Rev. E, 64 (2001) 016131; M. E. J. Newman, Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, Phys. Rev. E, 64 (2001) 016132; M. E. J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 101 (2004) 404–409.Google Scholar
  8. 8.
    S. Redner, Citations statistics from 110 years of Physical Review, Physics Today, 58 (2005) 49.CrossRefGoogle Scholar
  9. 9.
    R. M. Shiffrin, K. Börner, Mapping knowledge domains, Proc. Natl. Acad. Sci. USA, 98 (2001) 5183–5185.Google Scholar
  10. 10.
    C. Chen, Searching for intellectual turning points: Progressive knowledge domain visualization, Proc. Natl. Acad. Sci. USA (suppl.), 101 (2004) 5303–5310.CrossRefGoogle Scholar
  11. 11.
    K. W. Boyack, R. Klavans, K. Börner, Mapping the backbone of science, Scientometrics, 64 (2005) 351–374.CrossRefGoogle Scholar
  12. 12.
    L. M. A. Bettencourt, A. Cintron-Arias, D. I. Kaiser, C. Castillo-Chávez, The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models, Physica A, 364 (2006) 513–536.CrossRefGoogle Scholar
  13. 13.
  14. 14.
    F. Brauer, C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, 40, New York: Springer-Verlag, 2001.zbMATHGoogle Scholar
  15. 15.
    K. L. Cooke, D. A. Allers, C. Castillo-Chávez, Mixing patterns in models of AIDS, In: O. Arino, D. Axelrod, M. Kimmel (Eds), Mathematical Population Dynamics, New York: Dekker, 1991, pp. 297–309; C. Castillo-Chávez, K. Cooke, W. Huang, S. A. Levin, The role of long incubation periods in the dynamics of HIV/AIDS, part 1: Single population models, J. Math. Biol., 27 (1989) 373–398.Google Scholar
  16. 16.
    A. H. Guth, The inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D, 23 (1981) 347–356; A. D. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeniety, isotropy, and primordial monopole problems, Phys Lett B, 108 (1982) 389–393; A. Albrecht, P. J. Steinhardt, Cosmology for Grand Unified Theories with radiatively induced symmetry breaking, Phys. Rev. Lett., 48 (1982) 1220–1223.CrossRefGoogle Scholar
  17. 17.
    A. H. Guth, D. I. Kaiser, Inflationary cosmology: Exploring the universe from the smallest to the largest scales, Science, 307 (2005) 884–890.CrossRefMathSciNetGoogle Scholar
  18. 18.
    T. W. B. Kibble, Topology of cosmic domains and strings, J. Phys. A, 9 (1976) 1387–1398.CrossRefGoogle Scholar
  19. 19.
    A. Vilenkin, E. P. S. Shellard, Cosmic Strings and Other Topological Defects, New York: Cambridge University Press, 1994.zbMATHGoogle Scholar
  20. 20.
    S. B. Prusiner, Scrapie prions, Annu. Rev. Microbiol., 43 (1989) 345–374.CrossRefGoogle Scholar
  21. 21.
    K. Weigmann, Fashion of the times, EMBO Rep., 5 (11) (2004) 1028–1031.CrossRefGoogle Scholar
  22. 22.
    S. B. Prusiner, Prions, In: Les Prix Nobel 1997, Stockholm: Nobel Foundation, 1998, 262–323. Reprinted in Proc. Natl. Acad. Sci. USA, 95 (1998) 13363–13383.Google Scholar
  23. 23.
  24. 24.
    S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56–58.CrossRefGoogle Scholar
  25. 25.
    T. Braun, A. Schubert, S. Zsindely, Nanoscience and nanotechnology on the balance, Scientometrics, 38 (1997) 321–325.CrossRefGoogle Scholar
  26. 26.
    T. Braun, S. Zsindely, I. Dióspatonyi, E. Zádor, Gatekeeping patterns in nano-titled journals, Scientometrics, 70 (2007) 651–667.CrossRefGoogle Scholar
  27. 27.
    R. P. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys., 21 (1982) 467; Quantum mechanical computers, Found. Phys., 16 (1986) 507.CrossRefMathSciNetGoogle Scholar
  28. 28.
    D. Deutsch, Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer, Proc. R. Soc. Lond. A, 400 (1985) 97.zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    P. W. Shor, Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer, Proc. 35th Ann. IEEE Symp. on Foundations of Computer Science, S. Goldwater (Ed.), Los Alamitos, CA: Computer Society Press, 1994; L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings, 28th Annual ACM Symposium on the Theory of Computing, 212 (1996).Google Scholar
  30. 30.
    D. G. Cory, A. F. Fahmy, T. F. Havel, Ensemble quantum computing by NMR spectroscopy, Proc Natl. Acad. Sci. USA, 94 (1997) 1634–1639.CrossRefGoogle Scholar
  31. 31.
    L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, G. B. West, Growth, innovation, scaling and the pace of life in cities, Proc. Natl. Acad. Sci. USA, 104 (2007) 7301–7306.CrossRefGoogle Scholar
  32. 32.
    See, e.g., C. Mody, How probe microscopists became nanotechnologists, In: D. Baird, A. Nordmann, J. Schummer (Eds), Discovering the Nanoscale, Amsterdam: IOS Press, 2004, pp. 119–133; L. Zucker, M. Darby, Socio-economic impact of nanoscale science: Initial results and NanoBank, National Bureau of Economic Research, Cambridge, MA, Working Paper 11181 (2005); and the special issue of Scientometrics, 70 (2007) 541–880.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Luís M. A. Bettencourt
    • 1
    • 6
    Email author
  • David I. Kaiser
    • 2
  • Jasleen Kaur
    • 1
    • 3
  • Carlos Castillo-Chávez
    • 4
  • David E. Wojick
    • 5
  1. 1.Los Alamos National LaboratoryTheoretical DivisionLos AlamosUSA
  2. 2.Center for Theoretical Physics, Laboratory for Nuclear Science, Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.School of InformaticsIndiana UniversityBloomingtonUSA
  4. 4.Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  5. 5.US Department of EnergyOffice of Scientific and Technical InformationOak RidgeUSA
  6. 6.Santa Fe InstituteSanta FeUSA

Personalised recommendations