, Volume 72, Issue 1, pp 117–147 | Cite as

Measuring researcher interdisciplinarity

  • Alan L. Porter
  • Alex S. Cohen
  • J. David Roessner
  • Marty Perreault


We offer two metrics that together help gauge how interdisciplinary a body of research is. Both draw upon Web of Knowledge Subject Categories (SCs) as key units of analysis. We have assembled two substantial Web of Knowledge samples from which to determine how closely individual SCs relate to each other. “Integration” measures the extent to which a research article cites diverse SCs. “Specialization” considers the spread of SCs in which the body of research (e.g., the work of a given author in a specified time period) is published. Pilot results for a sample of researchers show a surprising degree of interdisciplinarity.


Subject Category Interdisciplinary Research Research Domain Research Knowledge Pilot Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chubin, D. E., Connolly, T. (1982). Research trails and science policies: local and extra-local negotiations of scientific work, In: N. Elias et al. (Eds), Scientific Establishments and Hierarchies. Sociology of the Sciences, Yearbook, Vol. 6, Dordrecht: D. Reidel, pp. 293–311.Google Scholar
  2. 2.
    Klein, J. T., Porter, A. L. (1990). Preconditions for interdisciplinary research, In: P. H. Birnbaum-More, F. A. Rossini, D. R. Baldwin (Eds), International Research Management, New York: Oxford University Press, pp. 11–19.Google Scholar
  3. 3.
    Morillo, F., Bordons, M., Gomez, I. (2001), An approach to interdisciplinarity through bibliometric indicators, Scientometrics, 51: 203–222.CrossRefGoogle Scholar
  4. 4.
    Committee on Facilitating Interdisciplinary Research, of the Committee on Science, Engineering, and Public Policy (2005), Facilitating Interdisciplinary Research, Washington, D.C.: National Academies Press.Google Scholar
  5. 5.
    Porter, A. L., Roessner, J. D., Cohen, A. S., Perreault, M. (2006), Interdisciplinary research — meaning, metrics, and nurture, Research Evaluation, 15(8): 187–195.Google Scholar
  6. 6.
    Dietz, J. S., Compalov, I., Bozeman, B., O’Neil Lane, E., Park, J. (2000), Using the curriculum vita to study the career paths of scientists and engineers: An exploratory assessment, Scientometrics, 49: 419–442.CrossRefGoogle Scholar
  7. 7.
    Leahey, E. (2006), Gender differences in productivity — Research specialization as a missing link, Gender & Society, 20(6): 754–780.CrossRefGoogle Scholar
  8. 8.
    Porter, A. L., Cunningham, S. W. (2005), Tech Mining: Exploiting Technologies for Competitive Advantage, New York: Wiley.Google Scholar
  9. 9.
    Porter, A., Kongthon, A., Lu, J. (2002), Research profiling: improving the literature review. Scientometrics, 53: 351–370.CrossRefGoogle Scholar
  10. 10.
    Del Rio, J. A., Kostoff, R. N., Garcia, E. O., Ramirez, A. M., Humenik, J. A. (2001), Citation mining: Integrating text mining and bibliometrics for reearch user profiling, Journal of the American Society for Information Science and Technology, 52(13): 1148–1156.CrossRefGoogle Scholar
  11. 11.
    Watts, R. J., Porter, A. L. (2005), Mining conference proceedings for corporate technology knowledge management, Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR.Google Scholar
  12. 12.
    Cunningham, S. W. (1996), The Content Evaluation of British Scientific Research, Ph.D. Thesis, University of Sussex: Science Policy Research Unit.Google Scholar
  13. 13.
    Morillo, F., Bordons, M., Gomez, I. (2003), Interdisciplinarity in science: A tentative typology of disciplines and research areas, Journal of the American Society for Information Science and Technology, 54(13): 1237–1249.CrossRefGoogle Scholar
  14. 14.
    Moya-Anegon, F., Vargas-Quesada, B., Herrero-Solana, V., Chinchilla-Rodriguez, Z., Corera-Alvarez, E., Munoz-Fernandez, F. J. (2004), A new technique for building maps of large scientific domains based on the cocitation of classes and categories, Scientometrics, 61: 129–145.CrossRefGoogle Scholar
  15. 15.
    Boyack, K. W., Klavans, R., Borner, K. (2005), Mapping the backbone of science, Scientometrics, 64: 351–374.CrossRefGoogle Scholar
  16. 16.
    Eto, H. (2003), Interdisciplinary information input and output of nano-technology project, Scientometrics, 58: 5–33.CrossRefGoogle Scholar
  17. 17.
    Peters, H. P. F., Braam, R. R., van Raan, A. F. J. (1995), Cognitive resemblance and citation relations in chemical engineering publications, Journal of the American Society for Information Science, 46(1): 9–21.CrossRefGoogle Scholar
  18. 18.
    Klavans, R., Boyack, K. W. (2006), Identifying a better measure of relatedness for mapping science, Journal of the American Society for Information Science and Technology, 57(2): 251–263.CrossRefGoogle Scholar
  19. 19.
    Porter, A. L., Chubin, D. E. (1985), An indicator of interdisciplinary research, Scientometrics, 8: 161–176.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.National Academies Keck Futures Initiative (NAKFI)IrvineUSA
  2. 2.Technology Policy and Assessment CenterGeorgia TechAtlantaUSA

Personalised recommendations