Advertisement

Scientometrics

, Volume 71, Issue 1, pp 3–24 | Cite as

The pulsing structure of science: Ortega y Gasset, Saint Matthew, fractality and transfractality

  • Rafael Bailón-MorenoEmail author
  • Encarnación Jurado-Alameda
  • Rosario Ruiz-Baños
  • Jean Pierre Courtial
  • Evaristo Jiménez-Contreras
Article

Abstract

By a new fractal/transfractal geometry of the Unified Scientometric Model, it is possible to demonstrate that science presents an oscillating or pulsing dynamic. It goes alternatively through two types of phases. Some phases are fractal, with crystalline networks, where the Matthew effect clearly manifests itself with regard to the most notable actors and those that provide the best contributions. The other phases are transfractal, with deformed, amorphous networks, in which the actors, considered mediocre, present greater capacity to restructure the network than the more renowned actors. The result after any transfractal deformation is a new crystalline fractal network. Behind this vision lies the Kuhn paradigms. As examples, the scientific fields of surfactants and autism have been analysed.

Keywords

Fractal Dimension Naltrexone Scientific Field Fractality Index Scientific Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Lotka, The frequency distribution of scientific productivity. Journal of the Washington Academy of Science, 16(12) (1926) 317–323.Google Scholar
  2. 2.
    D. J. de Solla Price, Science since Babylon, Yale University Press, New Haven, CT, 1961.Google Scholar
  3. 3.
    R. K. Merton, Matthew effect in Science. The reward and communication systems of science are considered. Science, 159(3810) (1968) 56–63.CrossRefGoogle Scholar
  4. 4.
    J. R. Cole, S. Cole, The Ortega hypothesis. Science, 178 (1972) 368–375.CrossRefGoogle Scholar
  5. 5.
    J. Ortega y Gasset, La rebelión de las masas, Editorial Tecnos (Grupo Anaya, S. A.), Madrid, 2003.Google Scholar
  6. 6.
    E. Garfield, Citation analysis as a tool in journal evaluation. Science, 178(4060) (1972) 471–479.CrossRefGoogle Scholar
  7. 7.
    T. S. Kuhn, The Structure of Scientific Revolutions, University of Chicago Press, Chicago, 1962.Google Scholar
  8. 8.
    A. Rip, J. P. Courtial, Co-word maps of biotechnology: an example of cognitive scientometrics. Scientometrics, 6(6) (1984) 381–400.CrossRefGoogle Scholar
  9. 9.
    B. Latour, Nunca hemos sido modernos: Ensayo de antropología simétrica, Debate, Madrid, 1993.Google Scholar
  10. 10.
    M. Callon, J. Law, A. Rip, Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World, The McMillan Press LTD, London, 1986.Google Scholar
  11. 11.
    B. Latour, Ciencia en acción: Cómo seguir a los científicos e ingenieros a través de la sociedad, Labor, Barcelona, 1992.Google Scholar
  12. 12.
    Callon, M., Representing nature, representing culture. Conference pour l’ouverture du Centre for Social Theory and Technology, 1995.Google Scholar
  13. 13.
    J. P. Courtial, L. Gourdon, A scientometric approach to autism based on translation sociology. Scientometrics, 40(2) (1997) 333–355.CrossRefGoogle Scholar
  14. 14.
    J. P. Courtial, L. Gourdon, Mapping the dynamics of research on autism or the cultural logic of science. Theory and Psychology, 9(5) (1999) 579–604.Google Scholar
  15. 15.
    B. Latour, Give me a laboratory and I will raise the world. In: K. Knorr-Cetina, M. Mulkay (Eds), Science Observed: Perspectives on the Social Study of Science. Sage, London, 1983, pp. 141–170.Google Scholar
  16. 16.
    R. Ruiz-Baños, Ciencimetría de redes. Análisis de la investigación internacional sobre Arqueología mediante el Método de las Palabras Asociadas (1980–1993). Ph. D. Thesis, Universidad, Granada, 1997.Google Scholar
  17. 17.
    R. Ruiz-Baños, R. Bailón-Moreno, E. Jiménez-Contreras, J. P. Courtial, Structure and dynamics of scientific networks. Part 1: Fundamentals of the quantitative model of translation. Scientometrics, 44(2) (1999) 217–234.CrossRefGoogle Scholar
  18. 18.
    R. Ruiz-Baños, R. Bailón-Moreno, E. Jiménez-Contreras, J. P. Courtial, Structure and dynamics of scientific networks. Part 2: The new Zipf’s Law, the cocitations’s clusters and the model of the presence of key-words. Scientometrics, 44(2) (1999) 235–265.CrossRefGoogle Scholar
  19. 19.
    R. Ruiz-Baños, Las traducciones dinámicas de las series temáticas. Propuesta de una nueva clasificación. Actas del IV Congreso ISKO España EOCONSID’99. La Representación y Organización del Conocimiento en sus distintas perspectivas: su influencia en la Recuperación de la Información, Capítulo Español de la Sociedad Internacional para la Organización del Conocimiento (Ed.), Granada, 1999, pp. 193–198.Google Scholar
  20. 20.
    B. Latour, S. Woolgar, La vida en el laboratorio. La construcción de los hechos científicos, Alianza, Madrid, 1995.Google Scholar
  21. 21.
    B. B. Mandelbrot, An informational theory of the stadistical structure of language. In: W. Jackson (Ed.), Communication Theory. London, Butterworths Scientific Publications, 1953, pp. 486–502.Google Scholar
  22. 22.
    B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1977.Google Scholar
  23. 23.
    W. Sierpinski, Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donné. Comptes Rendus, (162) (1916) 629.Google Scholar
  24. 24.
    B. B. Mandelbrot, Adaptation d’un message à la ligne de transmission. I & II. Comptes Rendus, 232 (1951) 1638–1640 & 2003–2005.zbMATHMathSciNetGoogle Scholar
  25. 25.
    B. B. Mandelbrot, Structure formelle des textes et communication (deux études). Word, 11 (1954) 424.Google Scholar
  26. 26.
    E. N. Lorenz, Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20 (1963) 130–141.CrossRefGoogle Scholar
  27. 27.
    G. Julia, Oeuvres de Gaston Julia, Gauthier-Villars, Paris, 1968.Google Scholar
  28. 28.
    A. F. J. Van Raan, Fractal geometry of information space as represented by co-citations clustering. Scientometrics, 20(3) (1990) 439–449.CrossRefGoogle Scholar
  29. 29.
    A. F. J. Van Raan, Fractal dimension of co-citations. Nature, 347 (1990) 626.CrossRefGoogle Scholar
  30. 30.
    R. Bailón-Moreno, Ingeniería del conocimiento y vigilancia tecnológica aplicada a la investigación en el campo de los tensioactivos. Desarrollo de un modelo ciencimétrico unificado. Ph. D. Thesis. Universidad de Granada, Granada, 2003.Google Scholar
  31. 31.
    R. Bailón-Moreno, E. Jurado-Alameda, R. Ruiz-Baños, J. P. Courtial, The unified scientometric model. Fractality and transfractality. Scientometrics, 63(2) (2005) 231–257.CrossRefGoogle Scholar
  32. 32.
    R. Bailón-Moreno, E. Jurado-Alameda, R. Ruiz-Baños, J. P. Courtial, Analysis of the scientific field of physical chemistry of surfactants with the Unified Scientometric Model. Fit of relational and activity indicators. Scientometrics, 63(2) (2005) 259–276.CrossRefGoogle Scholar
  33. 33.
    D. J. de Solla Price, A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5–6) (1976) 292–306.Google Scholar
  34. 34.
    A. Bookstein, Informetric distributions, Part II: Resilience to ambiguity. Journal of the American Society for information Science, 41 (1990) 376–386.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2007

Authors and Affiliations

  • Rafael Bailón-Moreno
    • 1
    Email author
  • Encarnación Jurado-Alameda
    • 1
  • Rosario Ruiz-Baños
    • 2
  • Jean Pierre Courtial
    • 3
  • Evaristo Jiménez-Contreras
    • 2
  1. 1.Departamento de Ingeniería Química, Facultad de Ciencias Campus de FuentenuevaUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Biblioteconomía y Documentación, Facultad de Biblioteconomía y DocumentaciónUniversidad de GranadaGranadaSpain
  3. 3.Laboratoire de Psychologie — Education — Cognition Développement (LabECD)Université de NantesNantesFrance

Personalised recommendations