Scientometrics

, Volume 70, Issue 3, pp 859–880 | Cite as

Mapping nanosciences by citation flows: A preliminary analysis

Article

Abstract

This article presents a citation-based mapping exercise in the nanosciences field and a first sketch of citation transactions (a measure of cognitive dependences). Nanosciences are considered to be one of the “convergent” components shaping the future of science and technology. Recurrent questions about the structure of the field concern its diversity and multi- or inter-disciplinarity. Observations made from various points of view confirm a strong differentiation of the field, which is scattered in multiple galaxies with moderate level of exchanges. The multi-disciplinarity of themes and super-themes detected by mapping also appears moderate, most of the super-themes being based on physics and chemistry in various proportions. Structural analysis of the list of references in articles suggests that the moderate multi-disciplinarity observed at the aggregate level partly stems from an actual inter-disciplinarity at the article level.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann, G. (1998), Innovationsschub aus dem Nanokosmos. Technologieanalyse, Bericht desVDI Technologiezentrum, Abteilung Zukünftige Technologie des Vereins Deutscher Ingenieure (VDI).Google Scholar
  2. Benzecri, J.-P. (Coll.) (1981), Pratique de l’analyse des données: Linguistique et lexicologie, Dunod, Paris.MATHGoogle Scholar
  3. Bonaccorsi, A., Thoma, G. (2005), Scientific and Technological Regimes in Nanotechnology: Combinatorial Inventors and Performance, LEM Papers Series, 2005-13.Google Scholar
  4. Braun, T., Schubert, A., Zsindely, S. (1997), Nanoscience and nanotechnology on the balance, Scientometrics, 38(2): 321–325.CrossRefGoogle Scholar
  5. Cronin, B. (2004), Normative shaping of scientific practice: The magic of Merton, Scientometrics, 60(1): 41–46.CrossRefGoogle Scholar
  6. Darby, M. R., Zucker, L. G. (2003), Grilichesian Breakthroughs: Inventions of Methods of Inventing and Firm Entry in Nanotechnology, NBER, 9825.Google Scholar
  7. Domenges, D., Volle, M. (1979), Analyse factorielle sphérique: une exploration, Annales de l’INSEE, 35 (Juillet–Septembre): 3–84.MathSciNetGoogle Scholar
  8. Escofier, B. (1978), Analyses factorielles et distances répondant au principe d’équivalence. distributionnelle, Revue de Statistique Appliquée, 26(4): 29–37.MathSciNetGoogle Scholar
  9. Fogelberg, H. (2003), The grand politics of technoscience: Contextualizing nanotechnology, In: H. Fogelberg, H. Glimell (Eds), Bringing Visibility To the Invisible Towards A Social Understanding of Nanotechnology, Goeteborg University STS Research Reports 6, pp. 29–47.Google Scholar
  10. Franks, A. (1987), Nanotechnology, Journal of Physics E: Scientific instruments, 20: 1442–1451.CrossRefGoogle Scholar
  11. Freitag, D., Blume, M., Byrnes, J., Chow, J. E., Kapadia, S., Rohwer, R., Wang, Z. (2005), New experiments in distributional representations of synonymy, Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL), Ann Arbor, June 2005.Google Scholar
  12. Garfield, E. (1967), Primordial concepts, citation indexing and historio-bibliography, Journal Library History, 2: 235–249.Google Scholar
  13. Glänzel, W., Czerwon, H. J. (1996), A new methodological approach to bibliographic coupling and its application to the national, regional and institutional level, Scientometrics, 37(2): 195–221.CrossRefGoogle Scholar
  14. Glänzel, W., Meyer, M., Du Plessis, M., Thijs, B., Magerman, T., Schlemmer, B., Debackere, K., Veugelers, R. (2003), Nanotechnology. Analysis of an Emerging Domain of Scientific and Technological Endeavour, Steunpunt O&O Statistieken, K.U. Leuven, Steunpuntoos.Google Scholar
  15. Heinze, T. (2004), Nanoscience and Nanotechnology in Europe: Analysis of Publications and Patent Applications including Comparisons with the United States, Nanotechnology, Law & Business, 1(4): 427–445.Google Scholar
  16. Heinze, T., Kuhlmann, S. (2006), Analysis of heterogeneous collaboration in the German research system with a focus on nanotechnology, In: D. Jansen (Ed.), New Forms of Governance in Research Organizations. From Disciplinary Theories towards Interfaces and Integration, Springer, Heidelberg.Google Scholar
  17. Kahane, B., Theoret, C., Mogoutov, A., Larédo, P. (2006) Dynamics of “Nano” Science: A Remake of the IT or Bio “Waves”? Prime, NanoDistrict Workshop, March 2006, Grenoble.Google Scholar
  18. Kessler, M. M. (1963), Bibliographic coupling between scientific papers, American Documentation, 14: 10–25.Google Scholar
  19. Kostoff, R. N., Stump, J. A., Johnson, D., Murday, J. S., Lau, C. G. Y., Tolles, W. M. (2006), The structure and infrastructure of the global nanotechnology literature, Journal of Nanoparticle Research, 8(3–4): 301–321.CrossRefGoogle Scholar
  20. Laredo, P. (2002), Six major challenges facing public intervention in higher education, science, technology and innovation, 4th Triple Helix Conference, Copenhagen.Google Scholar
  21. Legendre, P., Gallagher, E. D. (2001), Ecologically meaningful transformations for ordination of species data, Oecologia, 129(2): 271–280.CrossRefGoogle Scholar
  22. Lelu, A. (1994), Clusters and factors: neural algorithms for a novel representation of huge and highly multidimensional data sets, In: E. Diday, Y. Lechevallier (Eds), New Approaches in Classification and Data Analysis, Springer-Verlag, Berlin, pp. 241–248.Google Scholar
  23. Lelu, A. (2003), Evaluation of three measures of similarity used in information science, Information Sciences for Decision Making 6: 14–25.Google Scholar
  24. Leontief, W. (1996), Proposal for the Use of the Input-Output Approach in the Analysis of the Structure of Interdisciplinary Relationships, Economic Systems Research, 8(1): 81–86.Google Scholar
  25. Leydesdorff, L. (1998), Theories of citation? Scientometrics, 43(1): 5–25.CrossRefGoogle Scholar
  26. Leydesdorff, L., Wagner, C. (2007), Is the United States Losing Ground in Science? A Global Perspective on the World Science System in 2005, in preparation.Google Scholar
  27. Malsch, I. (1997), Nanotechnology in Europe: Experts Perceptions and Scientific Relations between Subareas, European Commission — JRC, Institute for Prospective Technological Studies, EUR 17710EN.Google Scholar
  28. Marcotorchino, J.-F. (1986), Maximal associations as a tool for classification, North Holland, In: W. Gaul, M. Schader (Eds), Classification as a Tool for Research, North-Holland, Amsterdam, pp. 275–288.Google Scholar
  29. Marshakova, I. V. (1973), Document coupling system based on references taken from Science Citation Index (in Russian), Nauchno-Teknicheskaya Informatsiya, Seriya 2(6): 3–8.Google Scholar
  30. Matusita, K. (1955), Decision rules based on distance, for problems of fit, two samples and applications, Annals of Mathematical Statistics, 26: 631–640.MathSciNetGoogle Scholar
  31. Meyer, M., Persson, O. (1998), Nanotechnology — Interdisciplinarity, patterns of collaboration and differences in application, Scientometrics, 42(2): 195–205.CrossRefGoogle Scholar
  32. Meyer, M., Persson, O., Power, Y. (2001), Nanotechnology Expert Group and Eurotech Data.Mapping Excellence in Nanotechnologies, EC, DG-Research, Preparatory study.Google Scholar
  33. Meyer, M. (2007), What do we know about innovation in nanotechnology? Some propositions about an emerging field between hype and path-dependency, Scientometrics, 70(3): 779–810.Google Scholar
  34. Morillo, F., Bordons, M., Gomez, I. (2001), An approach to interdisciplinarity bibliometric indicators, Scientometrics, 51(1): 203–222.CrossRefGoogle Scholar
  35. Noyons, E. C., Buter, R. K., Hinze, S., Van, Raan, A. F. J., Schmoch, U., Heinze, T., Rangnow, R. (2003), Mapping Excellence in Science and Technology across Europe: Nanoscience and Nanotechnology, EC, EC-PPN CT 2002-0001.Google Scholar
  36. Porter, A., Youtie, Y., Shapira, P. (2006), Refining Search Terms for Nanotechnology, working paper NSF/CNS-ASU.Google Scholar
  37. Roco, M. C., Bainbridge, W. S. (2002) Converging Technologies for Improving Human Performance. Nanotechnology, Biotechnology, Information Technology and Cognitive Science, NSF.Google Scholar
  38. Schmid, G., Decker, M., Ernst, H., Fuchs, H., Gruenwald, W., Grunwald, A., Hofmann, H., Mayor, M., Rathgeber, W., Simon, U., Wyrna, D. (2003), Small dimensions and material properties. A definition of nanotechnology, Europaeische Akademie, Graue Reihe, 35: 1–134.Google Scholar
  39. Schummer, J. (2004), Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology, Scientometrics, 59(3): 425–465.CrossRefGoogle Scholar
  40. Small, H. (1973), Co-citation in the scientific literature: A new measure of the relationship between two documents, Journal of the American Society for Information Science, 24(4): 265–269.Google Scholar
  41. Tomov, D. T., Mutafov, H. G. (1996), Comparative indicators of interdisciplinarity in modern science, Scientometrics, 37(2): 267–278.CrossRefGoogle Scholar
  42. Van Leeuwen, T., Tijssen, R. (2000), Interdisciplinary dynamics of modern science: analysis of cross-disciplinary citation flows, Research Evaluation, 9(3): 183–187.Google Scholar
  43. Zitt, M., Bassecoulard, E. (1994), Development of a method for detection and trend analysis of research fronts built by lexical or cocitation analysis, Scientometrics, 30(1): 333–351.CrossRefGoogle Scholar
  44. Zitt, M., Ramanana-Rahary, S., Bassecoulard, E. (2003), Bridging citation and reference distributions: Part I — The referencing-structure function and its application to co-citation and co-item studies, Scientometrics, 57(1): 93–118.CrossRefGoogle Scholar
  45. Zitt, M. (2005), Facing diversity of science: a challenge for bibliometric indicators — comments on A. Van Raan’s focus article, Measurement: Interdisciplinary Research and Perspectives, 3(1): 38–49.CrossRefGoogle Scholar
  46. Zitt, M., Bassecoulard, E. (2006), Delineating complex scientific fields by an hybrid lexical-citation method: An application to nanosciences, Information Processing & Management, 42(6): 1513–1531.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2007

Authors and Affiliations

  1. 1.LerecoINRANantes cedex 3France
  2. 2.INRACrebi, Jouy-en-JosasFrance
  3. 3.LASELDIUniversié de Franche-Comté, LASELDIBesançonFrance
  4. 4.Observatoire des Sciences et des Techniques (OST)ParisFrance

Personalised recommendations