Scientometrics

, Volume 70, Issue 1, pp 125–152 | Cite as

Identifying creative research accomplishments: Methodology and results for nanotechnology and human genetics

  • Thomas Heinze
  • Philip Shapira
  • Jacqueline Senker
  • Stefan Kuhlmann
Article

Abstract

Motivated by concerns about the organizational and institutional conditions that foster research creativity in science, we focus on how creative research can be defined, operationalized, and empirically identified. A functional typology of research creativity is proposed encompassing theoretical, methodological and empirical developments in science. We then apply this typology through a process of creative research event identification in the fields of nanotechnology and human genetics in Europe and the United States, combining nominations made by several hundred experts with data on prize winners. Characteristics of creative research in the two respective fields are analyzed, and there is a discussion of broader insights offered by our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksnes, D. W. (2006), Citation rates and perceptions of scientific contribution, Journal of the American Society for Information Science and Technology, 57,2: 169–185.CrossRefGoogle Scholar
  2. Amabile, T. M. (1996), Creativity in Context: Update to the Social Psychology of Creativity, Boulder, CO: Westview Press.Google Scholar
  3. Ashby, W. R. (1956), An Introduction to Cybernetics. London: Chapman and Hall. Internet (1999) http://pcp.vub.ac.be/books/IntroCyb.pdf MATHGoogle Scholar
  4. Berka, W., Brix, E., Smekal, C. (2003), Woher kommt das Neue? Kreativität in Wissenschaft und Kunst, Wien: Böhlau.Google Scholar
  5. Binnig, G., Rohrer, H. (1982, August 10), Scanning Tunneling Microscope. Patent 4,343,993. United States Patent and Trade Mark Office.Google Scholar
  6. Blau, J. (2005), Europe seeks greater creativity in basic research, Research Technology Management, May–June: 2–3.Google Scholar
  7. Darwin, C. (1859), On the Origin of Species by Means of Natural Selection. London, John Murray (First Edition).Google Scholar
  8. Dunbar, K. (1995), How scientists really reason: Scientific reasoning in real-world laboratories. In: Sternberg, R. J., Davidson, J. (Eds), Mechanisms of Insight, Cambridge, MA: MIT Press, pp. 363–395.Google Scholar
  9. Dunbar, K. (1997), How scientists think: Online creativity and conceptual change in science, In: Ward, T. B., Smith, S. M., Vaid, S. (Eds), Conceptual Structures and Processes: Emergence, Discovery and Change, APA Press: Washington DC, pp. 461–493.Google Scholar
  10. Einstein, A. (1905), Zur Elektrodynamik bewegter Körper (On the electrodynamics of moving bodies), Annalen der Physik, 17: 891.Google Scholar
  11. Fuchs, S. (1999), Niklas Luhmann, Sociological Theory, 17(1): 117–119.CrossRefGoogle Scholar
  12. Ferry, G., Sulston, J. (2002), The Common Thread: A Story of Science, Politics, Ethics and the Human Genome, Joseph Henry Press Books: Washington DC.Google Scholar
  13. Heinze, T. (2004), Nanoscience and nanotechnology in Europe: Analysis of publications and patent applications including comparisons with the United States, Nanotechnology Law & Business, 1(4): 427–447.Google Scholar
  14. Heinze, T. (2006), Die Kopplung von Wissenschaft und Wirtschaft. Das Beispiel der Nanotechnologie, Frankfurt/New York: Campus.Google Scholar
  15. Hemlin, S., Allwood, C. M., Martin, B. R. (2004), Creative Knowledge Environments: The Influences on Creativity in Research and Innovation, Cheltenham, UK: Edward Elgar.Google Scholar
  16. Hessenbruch, A. (2004): Nanotechnology and the negotiation of novelty, In: Baird, D., Nordmann, A., Schummer, J. (Eds), Discovering the Nanoscale, Amsterdam: IOS Press, pp. 135–144.Google Scholar
  17. Hollingsworth, R. (2002), Research Organizations and Major Discoveries in Twenthieth-century Science: A Case of Excellence in Biomedical Research, Berlin: WZB Discussion Paper P02-003.Google Scholar
  18. Hollingsworth, R. (2004), Institutionalizing excellence in biomedical research: The case of Rockefeller University. In: Stapleton, D. H. (Ed.), Creating a Tradition of Biomedical Research. Contributions to the History of the Rockefeller University, New York: Rockefeller University Press, pp. 17–63.Google Scholar
  19. Hutchinson Dictionary of Scientific Biography (1999), Helicon Publishing Ltd. Published under license in AccessScience@McGraw-Hill. http://www.accesscience.com (accessed March 27, 2006).
  20. Kaku, M., (2004), Einstein’s Cosmos: How Albert Einstein’s Vision Transformed Our Understanding of Space and Time, London: Weidenfeld & Nicolson.Google Scholar
  21. Kuhn, T. S. (1962), The Structure of Scientific Revolutions, Chicago: University of Chicago Press.Google Scholar
  22. Laredo, P. (1999), The Development of a Reproducible Method for the Characterisation of a Large Set of Research Collectives for EC EUPSR Project TSER SOE1-CT96-1036, Paris: Armines/CSI.Google Scholar
  23. Lovie, A.D., Lovie, P. (1993), Charles Spearman, Cyril Burt, and the origins of factor analysis, Journal of the History of the Behavioral Sciences, 29: 308–321.Google Scholar
  24. Luhmann, N. (1984), Soziale Systeme: Grundriß einer allgemeinen Theorie. Frankfurt am Main: Suhrkamp. (Social Systems, Stanford University Press, 1995).Google Scholar
  25. Luhmann, N. (1990), Die Wissenschaft der Gesellschaft, Frankfurt am Main: Suhrkamp.Google Scholar
  26. Maddox, B. (2002), Rosalind Franklin: The Dark Lady of DNA, New York, HarperCollins.Google Scholar
  27. Maritain, J. (1977), Creative Intuition in Art and Poetry, Princeton: Princeton University Press.Google Scholar
  28. Nagel, S. S. (2002), Policy Creativity: New Perspectives, Hauppauge: Nova Science Publishers.Google Scholar
  29. National Science Board (2004), Science and Engineering Indicators 2004, National Science Foundation, Division of Science Resources Statistics, Arlington, VA (NSB 04-01).Google Scholar
  30. Noyons, E. C. M., Buter, R., Raan, A. F. J. V., Schmoch, U., Heinze, T., Hinze, S., Rangnow, R. (2003), Mapping Excellence in Science and Technology across Europe. Nanoscience and Nanotechnology, Report to the European Commission: University of Leiden.Google Scholar
  31. Ochse, R. (1990), Before the Gates of Excellence. The Determination of Creative Genius, Cambridge: Cambridge University Press.Google Scholar
  32. Otten, H. R. (2001), Wie kreativ ist der homo politicus? Überlegungen zu Max Weber, In: Bluhm, H., Gebhardt, J. (Eds), Konzepte politischen Handelns. Kreativität — Innovation — Praxen, Baden-Baden: Nomos, pp. 189–214.Google Scholar
  33. Polanyi, M. (1966), The Tacit Dimension, London: Routledge & Kegan Paul Ltd.Google Scholar
  34. Polanyi, M. (1969), Knowing and Being. With an introduction by Marjorie Grene, Chicago: Chicago University Press.Google Scholar
  35. Segal, S. M., Busse, T. V., Mansfield, R. S. (1980), The relationship of scientific creativity in the biological sciences to predoctoral accomplishments and experiences, American Educational Research Journal, 17(4): 491–502.CrossRefGoogle Scholar
  36. Shapira, P., Kuhlmann, S. (Eds) (2003), Learning from Science and Technology Policy Evaluation, Cheltenham, UK.Google Scholar
  37. Simonton, D. K. (1999), Origins of Genius: Darwinian Perspectives on Creativity, New York: Oxford University Press.Google Scholar
  38. Simonton, D. K. (2004), Creativity in Science: Chance, Logic, Genius, and Zeitgeist, Cambridge: Cambridge University Press.Google Scholar
  39. Spearman, C. E. (1904a), ’General intelligence’ objectively determined and measured, American Journal of Psychology, 5: 201–293.CrossRefGoogle Scholar
  40. Spearman, C. E. (1904b), Proof and measurement of association between two things, American Journal of Psychology, 15: 72–101.CrossRefGoogle Scholar
  41. Spearman, C. E. (1927), The Abilities of Man, Their Nature and Measurement. New York: Macmillan.MATHGoogle Scholar
  42. Stachel, J. (2002), ’What Song the Syrens Sang’: How Did Einstein Discover Special Relativity? In: Stachel (Ed.), J. Einstein from “B” to “Z”, Boston: Birkhäuser, pp. 157–169.Google Scholar
  43. Sternberg, R. J. (2003), Wisdom, Intelligence, and Creativity Synthesized, Cambridge: Cambridge University Press.Google Scholar
  44. Stichweh, R. (1994), Wissenschaft, Universität, Professionen. Soziologische Analysen, Frankfurt am Main: Suhrkamp, pp. 15–51.Google Scholar
  45. Stumpf, H. (1995), Scientific creativity: A short overview, Educational Psychology Review, 7(3): 225–241.CrossRefMathSciNetGoogle Scholar
  46. Sutton, R. I. (2002), Weird ideas that spark innovation. Counterintuitive approaches are helping companies their creative edge, MIT Sloan Management Review, Winter 2002, pp. 83–87.Google Scholar
  47. Swedberg, R., George A., Akerlof (1994), In: Swedberg, R. (Ed.), Economics and Sociology. Redefining Their Boundaries: Conversations with Economists and Sociologists, New Jersey: Princeton University Press, pp. 61–77.Google Scholar
  48. Von Bertalanffy, L. (1949), The concepts of systems in physics and biology, Bulletin of the British Society for the History of Science, 1: 44–45.Google Scholar
  49. Williams, R. H., Zimmerman, D. W., Zumbo, B. D., Ross, D. (2003), Charles Spearman: British behavioral scientist, Human Nature Review, 3: 114–118.Google Scholar
  50. Willke, H. (1996), Systemtheorie I: Grundlagen, Stuttgart: Lucius & Lucius.Google Scholar
  51. Whitley, R. (2000), The Intellectual and Social Organization of the Sciences, 2nd edition, Oxford: Oxford University Press.Google Scholar
  52. Zuckerman, H. (1977), Scientific Elite, New York: Free Press.Google Scholar

Copyright information

© Akadémiai Kiadó 2007

Authors and Affiliations

  • Thomas Heinze
    • 1
  • Philip Shapira
    • 2
  • Jacqueline Senker
    • 3
  • Stefan Kuhlmann
    • 1
  1. 1.Fraunhofer Institute for Systems and Innovations ResearchKarlsruheGermany
  2. 2.School of Public PolicyGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Science and Technology Policy ResearchSussex UniversityBrightonUK

Personalised recommendations