Science & Education

, Volume 27, Issue 5–6, pp 435–455 | Cite as

The Nature of Scientific Practice and Science Education

Rationale of a Set of Essential Pedagogical Principles
  • Antonio García-CarmonaEmail author
  • José Antonio Acevedo-Díaz


There is, broadly speaking, an agreement within the international science education community that comprehension of the nature of science (NOS) should be a key element in the scientific literacy of citizens. During the last few decades, several didactic approaches have emerged concerning what and how to teach NOS. Also, one of the basic objectives of science education is for students to become familiar with the skills typical of scientific practice; however, there is little reference to their need to also acquire meta-knowledge about scientific practice (i.e., an understanding of the nature of scientific practice). Among other reasons, this may be due to NOS being essentially identified in most of the predominant proposals with the nature of scientific knowledge. But why not plan the teaching of science to be in tune with real scientific practice for students to learn about the nature of scientific practice at the same time as they are learning science? The answer to this question has given rise to a proposal grounded in ten essential pedagogical principles for the teaching and learning of science in secondary school. These are the principle of formulating questions, the principle of creativity and imagination, the principle of experimentation, the principle of procedural diversity, the principle of errors as opportunity, the principle of modeling, the principle of cooperation and teamwork, the principle of argumentation and discussion, the principle of communication, and the principle of evaluation. The purpose of this article is to present the justification and fundaments of these principles.


Science education Nature of science Nature of scientific practice Pedagogical principles 



This study was supported by the Ministry of Economy, Industry and Competitiveness (Spain) under grant EDU2017-82505-P.

Compliance with Ethical Standards

Conflict of Interest

The authors declared that they have no conflicts of interest.


  1. Abd-El-Khalick, F. (2012). Nature of science in science education: Toward a coherent framework for synergistic research and development. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 1041–1060). Dordrecht: Springer.Google Scholar
  2. Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087–2107.Google Scholar
  3. Acevedo, J. A. (2006a). Modelos de relaciones entre ciencia y tecnología: Un análisis social e histórico. Revista Eureka sobre Enseñanza y Divulgación de las. Ciencias, 3(2), 198–219.Google Scholar
  4. Acevedo, J. A. (2006b). Relevancia de los factores no-epistémicos en la percepción pública de los asuntos tecnocientíficos. Revista Eureka sobre Enseñanza y Divulgación de las. Ciencias, 3(3), 369–390.Google Scholar
  5. Acevedo, J. A. (2009). Enfoques explícitos versus implícitos en la enseñanza de la naturaleza de la ciencia. Revista Eureka sobre Enseñanza y Divulgación de las. Ciencias, 6(3), 355–386.Google Scholar
  6. Acevedo-Díaz, J. A. (2018). ¿Naturaleza de la ciencia o naturaleza de las ciencias? OEI, Divulgación y Cultura Científica Iberoamericana. Retrieved from
  7. Acevedo, J. A., & García-Carmona, A. (2016). «Algo antiguo, algo nuevo, algo prestado». Tendencias sobre la naturaleza de la ciencia en la educación científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(1), 3–19.Google Scholar
  8. Acevedo-Díaz, J. A., & García-Carmona, A. (2017). Controversias en la historia de la ciencia y cultura científica. Madrid: Los Libros de la Catarata.Google Scholar
  9. Acevedo-Díaz, J. A., García-Carmona, A. & Aragón, M. M. (2017a). Enseñar y aprender sobre naturaleza de la ciencia mediante el análisis de controversias de historia de la ciencia. Resultados y conclusiones de un proyecto de investigación didáctica. Madrid: Organización de Estados Iberoamericanos para la Educación, la Ciencia y la Cultura (OEI).Google Scholar
  10. Acevedo-Díaz, J. A., García-Carmona, A., Aragón-Méndez, M. M., & Oliva-Martínez, J. M. (2017b). Modelos científicos: Significado y papel en la práctica científica. Revista Científica, 30(3), 155–166.Google Scholar
  11. Adúriz-Bravo, A. (2014). Revisiting school scientific argumentation from the perspective of the history and philosophy of science. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1443–1472). Dordrecht: Springer.Google Scholar
  12. Adúriz-Bravo, A., & Ariza, Y. (2014). Una caracterización semanticista de los modelos científicos para la ciencia escolar. Bio-grafía, 7(13), 25–34.Google Scholar
  13. Akerson, V. L., & Abd-El-Khalick, F. (2003). Teaching elements of nature of science: A yearlong case study of a fourth-grade teacher. Journal of Research in Science Teaching, 40(10), 1025–1049.Google Scholar
  14. Allchin, D. (2004). Error and the nature of science. American Institute of Biological Sciences. Retrieved from
  15. Allchin, D. (2012). Teaching the nature of science through scientific errors. Science Education, 96(5), 904–926.Google Scholar
  16. Aragón, M. M., Oliva, J. M., & Navarrete, A. (2014). Contributions of learning through analogies to the construction of secondary education pupils’ verbal discourse about chemical change. International Journal of Science Education, 36(12), 1960–1984.Google Scholar
  17. Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—What kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749.Google Scholar
  18. Asikainen, M. A., & Hirvonen, P. E. (2014). Thought experiments in science and in science education. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1235–1256). Dordrecht: Springer.Google Scholar
  19. Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29.Google Scholar
  20. Banet, E. (2010). Finalidades de la educación científica en educación secundaria: Aportaciones de la investigación educativa y opinión de los profesores. Enseñanza de las Ciencias, 28(2), 199–214.Google Scholar
  21. Bell, R. (2009). Teaching the nature of science: Three critical questions. In Best Practices in Science Education. Carmel, CA: National Geographic School Publishing.Google Scholar
  22. Bell, R. L., Mulvey, B. K., & Maeng, J. L. (2012). Beyond understanding: Process skills as a context for nature of science instruction. In M. S. Khine (Ed.), Advances in nature of science research (pp. 225–245). Dordrecht: Springer.Google Scholar
  23. Bertsch, C., Kapelari, S., & Unterbruner, U. (2014). From cookbook experiments to inquiry based primary science: Influence of inquiry based lessons on interest and conceptual understanding. Inquiry in Primary Science Education, 1, 20–31.Google Scholar
  24. Bunterm, T., Lee, K., Lan, J. N., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? A comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937–1959.Google Scholar
  25. Cañal, P., García-Carmona, A., & Cruz-Guzmán, M. (2016). Didáctica de las ciencias experimentales en educación primaria. Madrid: Paraninfo.Google Scholar
  26. Clough, M. P. (2011). Teaching and assessing the nature of science. The Science Teacher, 78(6), 56–60.Google Scholar
  27. Cruz-Guzmán, M., García-Carmona, A., & Criado, A. M. (2017). An analysis of the questions proposed by elementary pre-service teachers when designing experimental activities as inquiry. International Journal of Science Education, 39(13), 1755–1774.Google Scholar
  28. Chin, C., & Osborne, J. (2008). Students’ questions: A potential resource for teaching and learning science. Studies in Science Education, 44(1), 1–39.Google Scholar
  29. Dagher, Z. R., & Erduran, S. (2016). Reconceptualizing the nature of science for science education. Why does it matter? Science & Education, 25(1–2), 147–164.Google Scholar
  30. Domin, D. S. (2009). Considering laboratory instruction through Kuhn’s view of the nature of science. Journal of Chemical Education, 86(3), 274–276.Google Scholar
  31. Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young People’s Images of Science. Buckingham: Open University Press.Google Scholar
  32. Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.Google Scholar
  33. Eastwood, J. L., Sadler, T. D., Zeidler, D. L., Lewis, A., Amiri, L., & Applebaum, S. (2012). Contextualizing nature of science instruction in socioscientific issues. International Journal of Science Education, 34(15), 2289–2315.Google Scholar
  34. Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education. Perspectives from classroom-based research. Dordrecht: Springer.Google Scholar
  35. Forato, T. C. M., Martins, R. A., & Pietrocola, M. A. (2011). Historiografia e natureza da ciência na sala de aula. Caderno Brasileiro de Ensino de Física, 28(1), 27–59.Google Scholar
  36. Gale, S. (1978). A prolegomenon to an interrogative theory of scientific inquiry. In H. Hiz (Ed.), Questions (pp. 319–345). Dordrecht: Springer.Google Scholar
  37. García-Carmona, A. (2008). Relaciones CTS en la educación científica básica II. Investigando los problemas del mundo. Enseñanza de las. Ciencias, 26(3), 389–402.Google Scholar
  38. García-Carmona, A. (2012a). Cómo enseñar Naturaleza de la Ciencia (NDC) a través de experiencias escolares de investigación científica. Alambique, 72, 55–63.Google Scholar
  39. García-Carmona, A. (2012b). “¿Qué he comprendido? ¿qué sigo sin entender?”. Promoviendo la auto-reflexión en clase de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(2), 231–240.Google Scholar
  40. García-Carmona, A. (2014). Naturaleza de la ciencia en noticias científicas de la prensa: Análisis del contenido y potencialidades didácticas. Enseñanza de las Ciencias, 32(3), 493–509.Google Scholar
  41. García-Carmona, A., & Acevedo, J. A. (2016). Learning about the nature of science using newspaper articles with scientific content: A study in initial primary teacher education. Science & Education, 25(5–6), 523–546.Google Scholar
  42. García-Carmona, A., & Acevedo-Díaz, J. A. (2017). Understanding the nature of science through a critical and reflective analysis of the controversy between Pasteur and Liebig on fermentation. Science & Education, 26(1), 65–91.
  43. García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2017). Primary pre-service teachers’ skills in planning a guided scientific inquiry. Research in Science Education, 47(5), 989–1010.Google Scholar
  44. García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2018). Prospective primary teachers’ prior experiences, conceptions, and pedagogical valuations of experimental activities in science education. International Journal of Science and Mathematics Education, 16(2), 237–253.Google Scholar
  45. García-Carmona, A., Vázquez, A., & Manassero, M. A. (2011). Estado actual y perspectivas de la enseñanza de la naturaleza de la ciencia: una revisión de las creencias y obstáculos del profesorado. Enseñanza de las Ciencias, 29(3), 403–412.Google Scholar
  46. García-Carmona, A., Vázquez, A., & Manassero, M. A. (2012). Comprensión de los estudiantes sobre naturaleza de la ciencia: un análisis del estado actual de la cuestión y perspectivas. Enseñanza de las Ciencias, 30(1), 23–34.Google Scholar
  47. Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71(5), 742–752.Google Scholar
  48. Gil, D. (1994). Relaciones entre conocimiento escolar y conocimiento científico. Investigación en la Escuela, 23, 17–32.Google Scholar
  49. Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61–98.Google Scholar
  50. Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Dordrecht: Springer.Google Scholar
  51. Gouvea, J., & Passmore, C. (2017). Models of’ versus ‘models for’. Science & Education, 26(1–2), 49–63.Google Scholar
  52. Graesser, A. C., Ozuru, Y., & Sullins, J. (2010). What is a good question? In M. G. McKeown & L. Kucan (Eds.), Bringing reading research to life (pp. 112–141). New York, NY: The Guildford Press.Google Scholar
  53. Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822.Google Scholar
  54. Harlen, W. (2012). Inquiry in science education. In S. Borda (coord.), Resources for implementing inquiry in science and mathematics at school. Retrieved from
  55. Harlen, W. (2013). Assessment & inquiry-based science education: Issues in policy and practice. Trieste: IAP.Google Scholar
  56. Harrison, A. G., & Treagust, D. F. (1998). Modelling in science lessons: Are there better ways to learn with models? School Science and Mathematics, 98(8), 420–429.Google Scholar
  57. Hayes, D. (2009). Encyclopedia of primary education. New York, NY: Routledge.Google Scholar
  58. Hein, G. E. (1961). The Liebig-Pasteur controversy: Vitality without vitalism. Journal of Chemical Education, 38(12), 614–619.Google Scholar
  59. Hempel, C. G. (1966). Philosophy of natural science. Oxford: Prentice-Hall.Google Scholar
  60. Hodson, D. (1988). Experiments in science and science teaching. Educational Philosophy and Theory, 20(2), 53–66.Google Scholar
  61. Hodson, D. (2005). Teaching and learning chemistry in the laboratory: A critical look at the research. Educación Química, 16(1), 30–38.Google Scholar
  62. Hodson, D. (2008). Towards scientific literacy: A teachers’ guide to the history, philosophy and sociology of science. Rotterdam: Sense Publishers.Google Scholar
  63. Hodson, D. (2014). Nature of science in the science curriculum: Origin, development, implications and shifting emphases. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 911–970). Dordrecht: Springer.Google Scholar
  64. Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389–403.Google Scholar
  65. Huang, T.-Y., Wu, H.-L., She, H.-C., & Lin, Y.-R. (2014). Enhancing students’ NOS views and science knowledge using Facebook-based scientific news. Educational Technology & Society, 17(4), 289–301.Google Scholar
  66. Hull, L. W. H. (1959). History and philosophy of science. New York: Longmans, Green.Google Scholar
  67. Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science Education, 84(1), 5–26.Google Scholar
  68. Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science. Science & Education, 20(7–8), 591–607.Google Scholar
  69. Irzik, G., & Nola, R. (2014). New directions for nature of science research. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 999–1021). Dordrecht: Springer.Google Scholar
  70. Jarman, R., & McClune, B. (2007). Developing scientific literacy using news media in the classroom. New York, NY: Open University Press.Google Scholar
  71. Justi, R. (2006). La enseñanza de las ciencias basada en modelos. Enseñanza de las Ciencias, 24(2), 173–184.Google Scholar
  72. Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.Google Scholar
  73. Khishfe, R. (2014). Explicit nature of science and argumentation instruction in the context of socioscientific issues: An effect on student learning and transfer. International Journal of Science Education, 36(6), 974–1016.Google Scholar
  74. Kind, P. M., & Kind, V. (2007). Creativity in science education: Perspectives and challenges for developing school science. Studies in Science Education, 43(1), 1–37.Google Scholar
  75. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.Google Scholar
  76. Klucevsek, K. M., & Brungard, A. B. (2016). Information literacy in science writing: How students find, identify, and use scientific literature. International Journal of Science Education, 38(17), 2573–2595.Google Scholar
  77. Koksal, E. A., & Berberoglu, G. (2014). The effect of guided-inquiry instruction on 6th grade Turkish students’ achievement, science process skills and attitudes toward science. International Journal of Science Education, 36(1), 66–78.Google Scholar
  78. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.Google Scholar
  79. Lakatos, I. (1978). The methodology of scientific research programmes. Philosophical papers (Vol. Volume 1). Cambridge, MA: Cambridge University Press.Google Scholar
  80. Laherto, A. M. P., Kampschulte, L., de Vocht, M., Blonder, R., Akaygün, S., & Apotheker, J. (2018). Contextualizing the EU's “responsible research and innovation” policy in science education. Eurasia Journal of Mathematics, Science & Technology Education, 14(6), 2287–2300.Google Scholar
  81. Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  82. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Towards valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521.Google Scholar
  83. Lederman, N. G., Antink, A., & Bartos, S. (2014a). Nature of science, scientific inquiry, and socio-scientific issues arising from genetics: A pathway to developing a scientifically literate citizenry. Science & Education, 23(2), 285–302.Google Scholar
  84. Lederman, N., & Lederman, J. (2012). Nature of scientific knowledge and scientific inquiry: Building instructional capacity through professional development. In B. J. Fraser et al. (Eds.), Second international handbook of science education (pp. 335–359). Chicago, IL: Springer.Google Scholar
  85. Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014b). Meaningful assessment of learners’ understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65–83.Google Scholar
  86. Leung, J. S. C., Wong, A. S. L., & Yung, B. H. W. (2015). Understandings of nature of science and multiple perspective evaluation of science news by non-science majors. Science & Education, 24(7–8), 887–912.Google Scholar
  87. Liu, S. C., & Lin, H. S. (2014). Primary teachers’ beliefs about scientific creativity in the classroom context. International Journal of Science Education, 36(10), 1551–1567.Google Scholar
  88. Longshaw, S. (2009). Creativity in science teaching. School Science Review, 90(332), 91–94.Google Scholar
  89. Lunetta, V. N., Hofstein, A., & Clough, M. (2007). Learning and reaching in the school laboratory: An analysis of research, theory, and practice. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (pp. 393–441). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  90. Marín, N. (2003). Conocimientos que interaccionan en la enseñanza de las ciencias. Enseñanza de las Ciencias, 21(1), 65–78.Google Scholar
  91. Martins, A. F. P. (2015). Natureza da Ciência no ensino de ciências: Uma proposta baseada em “temas” e “questões”. Caderno Brasileiro de Ensino de Física, 32(3), 703–737.Google Scholar
  92. Matthews, M. R. (2012). Changing the focus: From nature of science (NOS) to features of science (FOS). In E. M. S. Khine (Ed.), Advances in Nature of Science Research (pp. 3–26). Dordrecht: Springer.Google Scholar
  93. Matthews, M. R. (2017). Book review—Reconceptualizing the nature of science for science education. Studies in Science Education, 53(1), 105–107.Google Scholar
  94. McComas, W. F. (1998). The principal elements of the nature of science: Dispelling the myths. In W. F. McComas (Ed.), The nature of science in science education (pp. 53–70). Los Angeles, CA: Kluwer.Google Scholar
  95. McComas, W. F., & Olson, J. K. (1998). The nature of science in international science education standards documents. In W. F. McComas (Ed.), The nature of science in science education (pp. 41–52). Los Angeles, CA: Kluwer.Google Scholar
  96. McDonald, C. V. (2017). Exploring nature of science and argumentation in science education. In B. Akpan (Ed.), Science education: A global perspective (pp. 7–43). Dordrecht: Springer.Google Scholar
  97. McMullin, E. (1987). Scientific controversy and its termination. In H. T. Engelhardt Jr. & A. L. Caplan (Eds.), Scientific controversies. Case studies in the resolution and closure of disputes in science and technology (pp. 49–91). New York, NY: Cambridge University Press.Google Scholar
  98. Michel, H., & Neumann, I. (2016). Nature of science and science content learning. Science & Education, 25(9–10), 951–975.Google Scholar
  99. Millar, R. (2010). Practical works. In J. Osborne & J. Dillon (Eds.), Good practice in science teaching. What research has to say (pp. 108–134). New York, NY: Open University Press.Google Scholar
  100. Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 10–37). Cambridge: Cambridge University Press.Google Scholar
  101. NGSS Lead States. (2013). The next generation science standards: For states, by states. Washington, DC: National Academy of Sciences Press.Google Scholar
  102. Nielsen, K. H. (2013). Scientific communication and the nature of science. Science & Education, 22(9), 2067–2086.Google Scholar
  103. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109–1130.Google Scholar
  104. Oliva, J. M., Azcárate, P., & Navarrete, A. (2007). Teaching models in the use of analogies as a resource in the science classroom. International Journal of Science Education, 29(1), 45–66.Google Scholar
  105. Organisation for Economic Co-operation and Development [OECD]. (2016). PISA 2015 Assessment and analytical framework: Science, reading, Mathematic and financial literacy. Paris: OECD Publishing.Google Scholar
  106. Osborne, J. (2014). Scientific practices and inquiry in the science classroom. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 579–599). New York, NY: Routledge.Google Scholar
  107. Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.Google Scholar
  108. Pozo, J. I., & Gómez Crespo, M. A. (1998). Aprender y enseñar ciencia. Madrid: Morata.Google Scholar
  109. Reif, F., & Larkin, J. (1991). Cognition in scientific and everyday domains: Comparison and learning implications. Journal of Research in Science Teaching, 28, 733–760.Google Scholar
  110. Roca, M., Márquez, C., & Sanmartí, N. (2013). Las preguntas de los alumnos: Una propuesta de análisis. Enseñanza de las Ciencias, 31(1), 95–114.Google Scholar
  111. Rönnebeck, S., Bernholt, S., & Ropohl, M. (2016). Searching for a common ground—a literature review of empirical research on scientific inquiry activities. Studies in Science Education, 52(2), 161–197.Google Scholar
  112. Rudge, D. W., Cassidy, D. P., Fulford, J. M., & Howe, E. M. (2014). Changes observed in views of nature of science during a historically based unit. Science & Education, 23(9), 1879–1909.Google Scholar
  113. Salmerón, L. (2013). Actividades que promueven la transferencia de los aprendizajes: una revisión de la literatura. Revista de Educación, No. Extra., 34–53.Google Scholar
  114. Sanmartí, N., & Márquez, C. (2012). Enseñar a plantear preguntas investigables. Alambique, 70, 27–36.Google Scholar
  115. Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36(1–2), 111–139.Google Scholar
  116. Schwartz, R. S., & Crawford, B. A. (2006). Authentic scientific inquiry as context for teaching nature of science. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science (pp. 331–355). Dordrecht: Springer.Google Scholar
  117. Shamos, M. H. (1995). The myth of scientific literacy. New Brunswick, NJ: Rutgers University Press.Google Scholar
  118. Shibley, I. A. (2003). Using newspapers to examine the nature of science. Science & Education, 12(7), 691–702.Google Scholar
  119. Spektor-Levy, O., Eylon, B. S., & Scherz, Z. (2009). Teaching scientific communication skills in science studies: Does it make a difference? International Journal of Science and Mathematics Education, 7(5), 875–903.Google Scholar
  120. Vale, R. D. (2013). The value of asking questions. Molecular Biology of the Cell, 24(6), 680–682.Google Scholar
  121. Vygotsky, L. (1985). Pensamiento y Lenguaje. Buenos Aires: Pléyade.Google Scholar
  122. Weinberg, S. (2015). To explain the world: The discovery of modern science. London: Penguin.Google Scholar
  123. Wong, S. L., & Hodson, D. (2009). From the horse’s mouth: What scientists say about scientific investigation and scientific knowledge. Science Education, 93(1), 109–130.Google Scholar
  124. Zachos, P., Pruzek, R. & Hick, T. (2003). Approaching error in scientific knowledge and science education. In 7th International History, Philosophy of Science and Science Teaching Conference Proceedings (pp. 947–957). Winnipeg: IHPST Group.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Didáctica de las Ciencias Experimentales y Sociales, Facultad de Ciencias de la EducaciónUniversidad de SevillaSevillaSpain
  2. 2.HuelvaSpain

Personalised recommendations