Science & Education

, Volume 27, Issue 5–6, pp 523–545 | Cite as

Can Didactic Transposition and Popularization Explain Transformations of Genetic Knowledge from Research to Classroom?

  • François LombardEmail author
  • Laura Weiss


We will attempt a synthesis from various research perspectives that have analyzed the alterations that knowledge inevitably goes through while percolating into classroom activities. We will try to identify some of their causes and will illustrate them with examples in genetics. First, we will discuss some research on knowledge transformation when genetics knowledge is popularized (Staerklé and Clémence 2002), to show how knowledge is transformed in specific predictable manners as it moves from experts to general public. Then, we will draw from a large body of (French) research in didactic transposition (Chevallard 1991) in order to highlight what knowledge characteristically thrives or is lost as it percolates into school practice and learner’s knowledge. We will then draw from Huberman’s (Science Communication, 4(4), 478–510, 1983) analysis of knowledge use in schools the specificities of knowledge that teachers effectively use. All three perspectives reveal that cognitive and social environment are crucial determinants of what knowledge will be found in schools. An ecological metaphor explains how different cognitive environments from research into education favor knowledge adapted to specificities of this ecosystem. This transposition of knowledge is therefore not decay but inescapable and necessary. Ignoring this transposition has considerably reduced the effectiveness of many educational reforms. We will combine these three to propose an evolutionary perspective that could inform ways of expressing research into educational recommendations fed into the system to optimize the didactic transposition process.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abd-El-Khalick, F. (2011). Examining the sources for our understandings about science: enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353–374.CrossRefGoogle Scholar
  2. Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers' conceptions of nature of science: a critical review of the literature. International Journal of Science Education, 22(7), 665–701.CrossRefGoogle Scholar
  3. Allal, L., & Lopez, L. M. (2005). L’évaluation formative de l’apprentissage: revue de publications en langue française. In OCDE (dir.). L’évaluation formative : pour un meilleur apprentissage dans les classes secondaires, Paris : OCDE. 265–299.Google Scholar
  4. Anselme, B. (1998). Repères Pratiques. Le corps humain. Paris: Nathan.Google Scholar
  5. Arsac, G., Tiberghien, A., & Develay, M. (1989). La transposition didactique en mathématiques, en physique et en biologie. Lyon: IREM et LIRDIS.Google Scholar
  6. Astolfi, J.-P. (2005). Problèmes scientifiques et pratiques de formation. Raisons éducatives, 1, 65–81.Google Scholar
  7. Astolfi, J.-P., & Develay, M. (2002). La didactique des sciences (6e éd. mise à jour ed.). Paris: Presses universitaires de France.Google Scholar
  8. Boerwinkel, D. J., Yarden, A., & Waarlo, A. J. (2017). Reaching a consensus on the definition of genetic literacy that is required from a twenty-first-century citizen. Science & Education 26(10).Google Scholar
  9. Boyer, R., & Tiberghien, A. (1989). Goals in physics and chemistry education as seen by teachers and high school students. International Journal of Science Education, 11(3), 297–308.CrossRefGoogle Scholar
  10. Bromme, R., Pieschl, S., & Stahl, E. (2008). Epistemological beliefs are standards for adaptive learning: a functional theory about epistemological beliefs and metacognition. Metacognition and Learning, 7–26.Google Scholar
  11. Butts, C. T. (2016). Why I know but don’t believe. Science, 354(6310), 286–287.Google Scholar
  12. Chandrashekar, J., Hoon, M. A., Ryba, N. J. P., & Zuker, C. S. (2006). The receptors and cells for mammalian taste. Nature, 444(7117), 288–294.CrossRefGoogle Scholar
  13. Chevallard, Y. (1991). La transposition didactique. Du savoir savant au savoir enseigné (2e éd. revue et augmentée, 1985 lre ed.). Grenoble: La Pensée sauvage.Google Scholar
  14. Chevallard, Y. (2004). La place des mathématiques vivantes dans l’éducation secondaire : transposition didactique des mathématiques et nouvelle épistémologie scolaire. Proceedings of 3e Université d’été Animath 22–27 août 2004 Saint-Flour (Cantal).Google Scholar
  15. Chevallard, Y. (2007). Readjusting didactics to a changing epistemology. European Educational Research Journal, 6(2), 9–27.CrossRefGoogle Scholar
  16. Chevallard, Y. (2011). Les problématiques de la recherche en didactique à la lumière de la TAD. Exposé réalisé le 28 janvier 2011 dans le cadre du Séminaire de l’ACADIS (ADEF, Marseille).Google Scholar
  17. Chevallard, Y. (2012). Teaching Mathematics in tomorrow’s society: a case for an oncoming counterparadigm. 12th International Congress on Mathematical Education, 8 July – 15 July, 2012, COEX, Seoul, Korea.
  18. CIIP (2017). Sciences de la nature, cycle 3—activities reference book, CIIP. Neuchâtel: CIIP.Google Scholar
  19. Davis, L. C. (1993). Origin of the Punnett Square. The American Biology Teacher, 55(4), 209–212.Google Scholar
  20. Davis, E. A., Janssen, F. J. J. M., & Driel, J. H. V. (2016). Teachers and science curriculum materials: where we are and where we need to go. Studies in Science Education, 52(2), 127–160.CrossRefGoogle Scholar
  21. Dawkins, R. (2006). The selfish gene. Oxford: Oxford University Press.Google Scholar
  22. Giordan, A., & De Vecchi, G. (1987). Les origines du savoir: des conceptions des apprenants aux concepts scientifiques. Paris: Delachaux et Niestlé.Google Scholar
  23. Giordan, A., & De Vecchi, G. (1989). L'enseignement scientifique: comment faire pour que ça marche? Nice: Z'Editions.Google Scholar
  24. Goodyear, P. (2015). Teaching as design. HERDSA Review of Higher Education, 2, 27–50.Google Scholar
  25. Gould, S. J., & Vrba, E. S. (1982). Exaptation—a missing term in the science of form. Paleobiology, 8(1), 4–15.CrossRefGoogle Scholar
  26. Green Staerklé, E. G., & Clémence, A. (2002). De l'affiliation des souris de laboratoire au gène de la fidélité dans la vie: un exemple de transformation du savoir scientifique dans le sens commun. In C. Garnier & W. Doise (Eds.), Représentations sociales. Balisage du domaine d'études. Montréal: Éditions nouvelles, 147–155.Google Scholar
  27. Hadji, C., Bentolila, A., Meirieu, P., & Raulin, D. (2015). L'évaluation à l'école: pour la réussite de tous les élèves. Paris: Nathan.Google Scholar
  28. Hänig, D. (1901). Zur Psychophysik des Geschmackssinnes. Philosophische Studien, 17, 576–623.Google Scholar
  29. Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026.CrossRefGoogle Scholar
  30. Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Abington: Routledge.Google Scholar
  31. Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: foundations for the twenty-first century. Science Education, 88(1), 28–54.Google Scholar
  32. Hoskins, S. G., Stevens, L. M., & Nehm, R. H. (2007). Selective use of the primary literature transforms the classroom into a virtual laboratory. Genetics, 176(3), 1381–1389.CrossRefGoogle Scholar
  33. Huberman, M. (1983). Recipes for busy kitchens. A situational analysis of routine knowledge use in schools. Science Communication, 4(4), 478–510.Google Scholar
  34. Kampourakis, K., Reydon, T. A. C., Patrinos, G. P., & Strasser, B. J. (2014). Genetics and society—educating scientifically literate citizens: introduction to the thematic issue. Science & Education, 23(2), 251–258.CrossRefGoogle Scholar
  35. Kampourakis, K., Silveira, P., & Strasser, B. J. (2016). How do preservice biology teachers explain the origin of biological traits?: a philosophical analysis. Science Education, 100(6), 1124–1149.CrossRefGoogle Scholar
  36. Kirschner, P. A. (1992). Epistemology, practical work and academic skills in science education. Science & Education, 1(3), 273–299.Google Scholar
  37. Legardez, A. (2004). Enseigner l’économie: une perspective didactique. Enseigner l’économie. Paris: L’Harmattan.Google Scholar
  38. Lombard, F. (2017). Experiment@l-Tremplins Project. Université de Genève, Faculté des Sciences,
  39. Lombard, F., & Blatter, M.-C. (2009). Adapting teacher training to new evolution research approaches. In J. R. Jungck (Ed.), International Union of Biological Sciences BioEd 2009: Darwin 200 (pp. 70–78). Paris: IUBS.Google Scholar
  40. Marieb, E. N., Lachaîne, R., & Moussakova, L. (2000). Anatomie et physiologie humaines. Bruxelles: De Boeck Université.Google Scholar
  41. Millar, R. (2009). Analysing practical activities to assess and improve effectiveness: The Practical Activity Analysis Inventory (PAAI). York: Centre for Innovation and Research in Science Education, University of York.Google Scholar
  42. Mottier Lopez, L. (2015). Évaluations formative et certificative des apprentissages: enjeux pour l'enseignement. Bruxelles: De Boeck.Google Scholar
  43. NRC (2003). BIO2010: Transforming Undergraduate Education for Future Research Biologists In Committee on Undergraduate Biology Education to Prepare Research Scientists for the 21st Century (Ed.). Washington, DC: National Academies Press.Google Scholar
  44. OECD. (2014). PISA 2012 Results: What Students Know and Can Do (Volume I, Revised edition, February 2014): OECD Publishing.Google Scholar
  45. Orr, H. A. (2009). Fitness and its role in evolutionary genetics. Nature Reviews Genetics, 10(8), 531–539.CrossRefGoogle Scholar
  46. Osborne, J. (2010). Arguing to learn in science: the role of collaborative, critical discourse. Science, 328(5977), 463–466.CrossRefGoogle Scholar
  47. Osborne, J., Simon, S., Christodoulou, A., Howell Richardson, C., & Richardson, K. (2013). Learning to argue: a study of four schools and their attempt to develop the use of argumentation as a common instructional practice and its impact on students. Journal of Research in Science Teaching, 50(3), 315–347.CrossRefGoogle Scholar
  48. Perrenoud, Ph. (1984). La fabrication de l’excellence scolaire: du curriculum aux pratiques d’évaluation. Vers une analyse de la réussite, de l’échec et des inégalités comme réalités construites par le système scolaire. Genève : Droz, 2e édition augmentée 1995.Google Scholar
  49. Perilleux. (1999). SVT 3ème. Paris: Nathan.Google Scholar
  50. Puig, B., & Jiménez-Aleixandre, M. P. (2011). Different music to the same score: Teaching about genes, environment, and human performances socio-scientific issues in the classroom. In Sadler, Troy D. (Ed.) Socio-scientific Issues in the Classroom: Teaching, Learning and Research. (pp. 201–238). Dordrecht: Springer.Google Scholar
  51. Roegiers, X. (2011). Combiner le complexe et le concret: le nouveau défi des curricula de l’enseignement. Le français dans le monde, Recherches et applications, 49, 36–48.Google Scholar
  52. Scardamalia, M., & Bereiter, C. (2002). Knowledge building. Encyclopedia of education (second edition. Ed.). New York: Macmillan Reference.Google Scholar
  53. Schäffler, A., & Menche, N. (2004). Anatomie, physiologie, biologie : abrégé d'enseignement pour les professions de santé. Paris: Maloine.Google Scholar
  54. Schwarz, C., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., et al. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654.CrossRefGoogle Scholar
  55. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  56. Tanner, K. D., Chatman, L., & Allen, D. (2003). Approaches to biology teaching and learning: science teaching and learning across the school-university divide—cultivating conversations through scientist-teacher partnerships. Life Sciences Education, 2(4), 195.CrossRefGoogle Scholar
  57. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  58. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151.CrossRefGoogle Scholar
  59. Waight, N., & Abd-El-Khalick, F. (2011). From scientific practice to high school science classrooms: transfer of scientific technologies and realizations of authentic inquiry. Journal of Research in Science Teaching, 48(1), 37–70.CrossRefGoogle Scholar
  60. Weiss, L., Monnier, A., & Strasser, B. (2013). Le travail enseignant vis-à-vis d’un savoir nouveau. Le cas de l’argumentation en français et en physique. In J.-L. Dorier, F. Leutenegger & B. Schneuwly (Eds). Didactique en construction, constructions en didactique. 181-200Bruxellles : de Boeck.Google Scholar
  61. Wilson, D. S. (2007). Evolution for everyone: How Darwin’s theory can change the way we think about our lives. New York: Delacorte Pr.Google Scholar
  62. Woolston, C. (2014). Study points to press releases as sources of hype. Nature News, 516(7531), 291.CrossRefGoogle Scholar
  63. Yarden, A., & Carvalho, G. S. (2011). Authenticity in biology education: benefits and challenges. Journal of Biological Education, 45(3), 118–120.CrossRefGoogle Scholar
  64. Yarden, A., Norris, S. P., & Phillips, L. M. (2015). Adapted Primary Literature: The Use of Authentic Scientific Texts in Secondary Schools. Dordrecht: Springer.Google Scholar
  65. Young, L., Nilsen, R., Waymire, K., MacGregor, G., & Insel, T. (1999). Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 400(6746), 766–768.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.University of Geneva, IUFE and TECFAGeneva 4Switzerland
  2. 2.University of Geneva, IUFEGeneva 4Switzerland

Personalised recommendations