Advertisement

Science & Education

, Volume 24, Issue 5–6, pp 543–559 | Cite as

Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics

  • Tinne Hoff KjeldsenEmail author
  • Jesper Lützen
Article

Abstract

In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit–reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.

Keywords

Function Concept Mathematical Knowledge Mathematical Concept Mathematical Practice Epistemological Understanding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aaboe, A. (2001). Episodes from the early history of astronomy. New York: Springer.CrossRefGoogle Scholar
  2. Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087–2107.CrossRefGoogle Scholar
  3. Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701.CrossRefGoogle Scholar
  4. Albrechtsen, A., Christensen, K. G., & Hecksher, T. (2004). The dissemination of the theory of distributions after 1950. (In Danish). IMFUFA, text 428, Roskilde University.Google Scholar
  5. Andersen, A. S., & Heilesen, S. (2015). The Roskilde model: Problem-oriented learning and project work. Heidelberg, New York: Springer.Google Scholar
  6. Baron, M. E. (1969). The origins of the infinitesimal calculus. Oxford: Pergamon Press.Google Scholar
  7. Bernoulli, J. (1718). Remarques sur ce qu’on a donné jusqu’ici de solutions des problèmes sur les isopérimèters. Mémoires de l’Académie Royale des Sciences, 1718, 100. Page reference to Johan Bernoulli Opera Omnia Vol. 2, 235–69.Google Scholar
  8. Blomhøj, M., & Kjeldsen, T. H. (2009). Project organised science studies at university level: Exemplarity and interdisciplinarity. ZDM Mathematics Education, Zentralblatt für Didaktik der Mathematik, 41, 183–198.CrossRefGoogle Scholar
  9. Bos, H. J. M. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences, 14, 1–90.CrossRefGoogle Scholar
  10. Bourbaki, N. (1939). Théorie des ensembles (Facicule des résultats). Paris: Hermann.Google Scholar
  11. D’Alembert, J. L. R. (1747). Recherches sur la courbe que forme une corde tenduë mise en vibration. Histoire et Memoires de l’Académie Royale des Sciences de Berlin, 3, 214–219.Google Scholar
  12. D’Alembert, J. L. R. (1761). Recherches sur les vibrations des cordes sonores. Opuscules Mathématiques, 1, 1–64 and supplement 65–73.Google Scholar
  13. Dirichlet, J. P. G. L. (1829). Sur la convergence des series trigonometriques qui servent à représenter une function arbitraire entre des limites données. Journal für die reine und angewandte Mathematik, 4, 157–169. Dirichlet’s Werke 1, 117–132.Google Scholar
  14. Dirichlet, J. P. G. L. (1837). Über die Darstellung ganz willkürlicher Funktionen durch sinus- und cosinus-Reihen. Repertorium der Physik, 1, 152–174. Dirichlet’s Werke 1, 133–160.Google Scholar
  15. Euler, L. (1748a). Intorductio in Analysin Infinitorum (2 volumes). Lausanne: Bousquet. Euler’s Opera Omnia (1) 8–9.Google Scholar
  16. Euler, L. (1748b). Sur la vibrations des cordes. Mémoirse de l’Académie des Sciences de Berlin, 4, 1748 (publ. 1750), 69–85. Euler’s Opera Omnia (2) 10, 63–77.Google Scholar
  17. Euler, L. (1755). Institutiones Calculi Differentialis. St. Petersburg: Academiae Imperialis Scientiarium. Euler’s Opera Omnia (1) 10.Google Scholar
  18. Euler, L. (1763). De usu functionum discontinuarum in analysi. Novi Commentarii Academiae Scientiarum Petropolitanae, 11, (1763, publ. 1768), 67–102. Euler’s Opera Omnia (1) 23, 74–91.Google Scholar
  19. Euler, L. (1765). Eclaircissements sur le movement des cordes vibrantes. Micellanea Taurenencia, 3 (1762–1765, publ 1766), 1-26. Euler’s Opera Omnia (2) 10, 377–396.Google Scholar
  20. Fourier, J. (1822). Théorie analytique de la chaleur. Paris: Firmin Didot.Google Scholar
  21. Godiksen, R. B., Jørgensen, C., Hanberg, T. M., & Toldbod, B. (2003). Fourier and the Concept of a Functionthe transition from Euler’s to Dirichlet’s concept of a function. (In Danish). IMFUFA, text 416, Roskilde University.Google Scholar
  22. Hankel, H. (1870). Untersuchungen über die unendlich oft oscillierenden und unstetigen Funktionen. Mathematische Annalen, 20, 63–112.CrossRefGoogle Scholar
  23. Kjeldsen, T. H., & Blomhøj, M. (2009). Integrating history and philosophy in mathematics education at university level through problem-oriented project work. ZDM Mathematics Education, Zentralblatt für Didaktik der Mathematik, 41, 87–104.CrossRefGoogle Scholar
  24. Kjeldsen, T. H., & Blomhøj, M. (2012). Beyond motivation—History as a method for the learning of meta-discursive rules in mathematics. Educational Studies in Mathematics, 80, 327–349.CrossRefGoogle Scholar
  25. Lagrange, J. L. (1806). Leçons sur le calcul des fonctions (2nd ed.). Paris: Courcier.Google Scholar
  26. Laugwitz, D. (1992). Das letzte Ziel ist immer die Darstellung einer Funktion: Grundlagen der analysis bei Weierstraß 1886, historische Wurzeln und Parallelen. Historia Mathematica, 19, 341–355.CrossRefGoogle Scholar
  27. Leibniz, G. W. (1673). De linea ex lineis numero infinitis. Acta Eruditorum 1692. Leibniz’s Mathematische Schriften, 5, 266–269.Google Scholar
  28. Lützen, J. (1982). The prehistory of the theory of distributions. New York: Springer.CrossRefGoogle Scholar
  29. Lützen, J. (2011a). The physical origin of physically useful mathematics. Interdisciplinary Science Reviews, 36(3), 229–243.CrossRefGoogle Scholar
  30. Lützen, J. (2011b). Examples and reflections on the interplay between mathematics and physics in the 19th and 20th century. In K-H. Schlote & Schneider (Eds.), Mathematics meets physics: A contribution to their interaction in the 19th and the first half of the 20th century (pp. 17–41). Frankfurt am Main: M. Deutsch, pp. 17–41.Google Scholar
  31. Lützen, J. (2013). The interaction of physics, mechanics and mathematics in Joseph Liouville’s research. In E. Barbin, & R. Pisano, (Eds.), The dialectic relation between physics and mathematics in the XIXth Century. (pp.79-96). Dordrecht: Springer (History of Mechanism and Machine Science, Vol. 16).Google Scholar
  32. Monna, A. F. (1972). The concept of function in the 19th and 20th centuries, in particular with regard to the discussions between Baire, Borel and Lebesgue. Archive for History of Exact Sciences, 9, 57–84.CrossRefGoogle Scholar
  33. Rutherford, F. J. (1964). The role of inquiry in science teaching. Journal of Research in Science Teaching, 2, 80–84.Google Scholar
  34. Rüthing, D. (1984). Some definitions of the concept of function from Joh. Bernoulli to N. Bourbaki. The Mathematical Intelligencer, 6, 72–77.Google Scholar
  35. Schwartz, L. (1950/51). Théorie des distributions. Vol. 1 1950, Vol. 2 1951. Paris: Hermann.Google Scholar
  36. Sfard, A. (1991). On the dual nature of mathematical conception: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.CrossRefGoogle Scholar
  37. Sfard, A. (2008). Thinking as communicating. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Von Neumann, J. (1927). Mathematische Begründung der Quantenmechanik. Göttinger Nachrichten, 1927, 1–57.Google Scholar
  39. Weierstrass, K. F. W. (1872). Über continuierliche Funktionen eines reellen Argumente, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen. Weierstrass’ Mathematische Werke II (pp. 71–74). Berlin: Mayer und Müller.Google Scholar
  40. Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications in Pure and Applied Mathematics, 13, 1–14. Page numbers refer to the reproduction in Mathematics: People, Problems, Results I-III, ed. Campbell, D.M. and Higgens.Google Scholar
  41. Yuschkevich, A. P. (1976). The concept of function up to the middle of the 19th century. Archive for History of Exact Sciences, 16, 37–85.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMFUFA, Department of Science, Systems and ModelsRoskilde UniversityRoskildeDenmark
  2. 2.Department of Mathematical SciencesCopenhagen UniversityCopenhagenDenmark

Personalised recommendations