Science & Education

, Volume 23, Issue 10, pp 2095–2117 | Cite as

A Tale of Two Crocoducks: Creationist Misuses of Molecular Evolution

Article

Abstract

Although some creationist objections to evolutionary biology are simplistic and thus are easily refuted, when more technical arguments become widespread it is important for science educators to explain the relevant science in a straightforward manner. An interesting case study is provided by misguided allegations about how cytochrome c data pertain to molecular evolution. The most common of these misrepresentations bears a striking similarity to a particularly glaring misunderstanding of what should be expected of a transitional form in a fossil sequence. Although evangelist Kirk Cameron’s ridiculous injunction of a hypothetical ‘crocoduck’ as an example of a potential transitional form is frequently invoked to illustrate the ignorance of many critics of evolutionary science, a strikingly analogous argument was applied to cytochrome c data by biochemist Michael Denton in 1985. The details of this analogy are worth exploring to clarify the fallacy of the widely circulated molecular argument.

References

  1. Ayala, F. (2011). Walter Monroe Fitch 1929–2011 a biographical memoir. Washington, DC: National Academy of Sciences.Google Scholar
  2. Baum, D. A., & Offner, S. (2008). Phylogenies and tree-thinking. The American Biology Teacher, 70(4), 222–229.CrossRefGoogle Scholar
  3. Baum, D. A., & Smith, S. (2013). Tree thinking: An introduction to phylogenetic biology. Greenwood Village, CO: Roberts and Company Publishers.Google Scholar
  4. Brauer, M. J., & Brumbaugh, D. R. (2001). Biology remystified: The scientific claims of the new creationists. In R. T. Pennock (Ed.), Intelligent design creationism and its critics (pp. 289–334). Cambridge: The MIT Press.Google Scholar
  5. Cameron, K. (2007). Rational response debate with Kirk Cameron pt.6. http://www.youtube.com/watch?v=X6EmOQLf25s. Accessed October 27, 2013.
  6. Catley, K. M. (2006). Darwin’s missing link—A novel paradigm for evolution education. Science Education, 90(5), 767–783.CrossRefGoogle Scholar
  7. Catley, K. M., Novick, L. R., & Shade, C. K. (2010). Interpreting evolutionary diagrams: When topology and process conflict. Journal of Research in Science Teaching, 47(7), 861–882.CrossRefGoogle Scholar
  8. Chiappe, L. M. (2009). Downsized dinosaurs: The evolutionary transition to modern birds. Evolution: Education and Outreach, 2, 248–256.Google Scholar
  9. Clarke, J. A., Zhou, Z., & Zhang, F. (2006). Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui. Journal of Anatomy, 208, 287–308.CrossRefGoogle Scholar
  10. Crick, F. H. C. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 12, 138–163.Google Scholar
  11. Crisp, M. D., & Cook, L. G. (2005). Do early branching lineages signify ancestral traits? Trends in Ecology & Evolution, 20(3), 122–128.CrossRefGoogle Scholar
  12. Dao, C. (2009). New ICR Research Associate: Nathaniel T. Jeanson, Ph.D. Acts & Facts, 38(9), 9.Google Scholar
  13. Davis, P., & Kenyon, D. H. (1993). Of pandas and people: The central question of biological origins (2nd ed.). Dallas: Haughton Publishing Company.Google Scholar
  14. Dayhoff, M. O. (1969a). Computer analysis of protein evolution. Scientific American, 221(1), 87–95.CrossRefGoogle Scholar
  15. Dayhoff, M. O. (Ed.). (1969b). Atlas of protein sequence and structure 1969 volume 4. Silver Spring, MD: National Biomedical Research Foundation.Google Scholar
  16. Dayhoff, M. O. (Ed.). (1972). Atlas of protein sequence and structure 1972 volume 5. Silver Spring, MD: National Biomedical Research Foundation.Google Scholar
  17. Dayhoff, M. O. (Ed.). (1978). Atlas of protein sequence and structure volume 5 supplement 3 1978. Silver Spring, MD: National Biomedical Research Foundation.Google Scholar
  18. Dayhoff, M. O., & Eck, R. V. (1968a). Evolution of the cytochrome C family. In M. O. Dayhoff & R. V. Eck (Eds.), Atlas of protein sequence and structure 1967–68 (pp. 7–13). Silver Spring, MD: National Biomedical Research Foundation.Google Scholar
  19. Dayhoff, M. O., & Eck, R. V. (Eds.). (1968b). Atlas of protein sequence and structure 1967–8. Silver Spring MD: National Biomedical Research Foundation.Google Scholar
  20. Dayhoff, M. O., Eck, R. V., Chang, M. A., & Sochard, M. R. (1965). Atlas of protein sequence and structure. Silver Spring, MD: National Biomedical Research Foundation.Google Scholar
  21. Dayhoff, M. O., & Park, C. M. (1969). Cytochrome C: Building a phylogenetic tree. In M. O. Dayhoff (Ed.), Atlas of protein sequence and structure volume 4 1969 (pp. 7–16). Silver Spring, MD: National Biomedical Research Foundation.Google Scholar
  22. Dayhoff, M. O., Schwartz, R. M., & Orcutt, B. C. (1978). A model of evolutionary change in proteins. In M. O. Dayhoff (Ed.), Atlas of protein sequence and structure volume 5 supplement 3 1978 (pp. 345–352). Silver Spring, MD: National Biomedical Research Foundation.Google Scholar
  23. de Queiroz, A. (2014). The monkey’s voyage: How improbable journeys shaped the history of life. New York: Basic Books.Google Scholar
  24. Dembski, W., & Wells, J. (2008). The design of life: Discovering signs of intelligence in biological systems. Dallas: Foundation for Thought and Ethics.Google Scholar
  25. Denton, M. J. (1985). Evolution: A theory in crisis. Great Britain: Burnett Books.Google Scholar
  26. Denton, M. J. (1998). Nature’s destiny: How the laws of biology reveal purpose in the universe. New York: Free Press.Google Scholar
  27. Denton, M. J. (1999). Comments on special creationism. In P. E. Johnson & D. O. Lamoureux (Eds.), Darwinism defeated? The Johnson-Lamoureux debate on biological origins (pp. 141–154). Vancouver: Regent College Publishing.Google Scholar
  28. Dickerson, R. E. (1971). The structure of cytochrome c and the rates of molecular evolution. Journal of Molecular Evolution, 1, 26–45.CrossRefGoogle Scholar
  29. Dickerson, R. E. (1972). The structure and history of an ancient protein. Scientific American, 226, 58–70.CrossRefGoogle Scholar
  30. Dickerson, R. E. (1980). The cytochromes c: An exercise in scientific serendipity. In D. S. Sigman & M. A. B. Bazier (Eds.), The evolution of protein structure and function (pp. 173–202). New York: Academic Press.CrossRefGoogle Scholar
  31. Dickerson, R. E., & Geis, I. (1969). The structure and action of proteins. New York: Harper & Row.Google Scholar
  32. Dietrich, M. R. (1998). Paradox and persuasion: Negotiating the place of molecular evolution within evolutionary biology. Journal of the History of Biology, 31, 85–111.CrossRefGoogle Scholar
  33. Eck, R. V., & Dayhoff, M. O. (Eds.). (1966). Atlas of protein sequence and structure 1966. Silver Spring MD: National Biomedical Research Foundation.Google Scholar
  34. Eldredge, N. (1986). Review of evolution: A theory in crisis by Michael Denton. The Quarterly Review of Biology, 61(4), 541–542.CrossRefGoogle Scholar
  35. Fitch, W. M., & Margoliash, E. (1967). Construction of phylogenetic trees. Science, 155, 279–284.CrossRefGoogle Scholar
  36. Forrest, B., & Gross, P. R. (2007). Creationism’s Trojan horse: The wedge of intelligent design (2nd ed.). New York: Oxford.Google Scholar
  37. Gaither, M. (2009). Homeschooling in the USA: Past, present and future. Theory and Research in Education, 7, 331–346.CrossRefGoogle Scholar
  38. Garner, J. P., Taylor, G. K., & Thomas, A. L. R. (1999). On the origin of birds: The sequence of character acquisition in the evolution of avian flight. Proceedings of the Royal Society B, 266, 1259–1266.CrossRefGoogle Scholar
  39. Gish, D. (1993). Creation scientists answer their critics. El Cajon, CA: Institute for Creation Research.Google Scholar
  40. Godfrey, L. R. (Ed.). (1983). Scientists confront creationism. New York: W. W. Norton & Company.Google Scholar
  41. Graur, D., & Martin, W. (2004). Reading the entrails of chickens: Molecular timescales of evolution and the illusion of precision. Trends in Genetics, 20(2), 80–86.CrossRefGoogle Scholar
  42. Gregory, T. R. (2008). Understanding evolutionary trees. Evolution: Education and Outreach, 1, 121–137.Google Scholar
  43. Hagen, J. (1999). Naturalists, molecular biologists, and the challenges of molecular evolution. Journal of the History of Biology, 32, 321–341.CrossRefGoogle Scholar
  44. Hagen, J. (2011). The origin and early reception of sequence databases. In M. Hamacher, M. Eisenacher, & C. Stephan (Eds.), Data mining in proteomics: From standards to applications (pp. 61–78). New York: Springer.CrossRefGoogle Scholar
  45. Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.Google Scholar
  46. Homchick, J. A. (2012). March of the pandas: Imitation and intelligent design. Poroi 8(1), 5. 10.13008/2151-2957.1109. Accessed October 27, 2013.
  47. Jeanson, N. (2009). Nathaniel Jeanson, Harvard PhD—Cytochrome C sequence conservation bankrupts evolution! http://www.youtube.com/watch?v=NCVE5BwBrUk. Accessed October 26, 2013.
  48. Jeanson, N. (2011). Molecular equidistance: The echo of discontinuity? Acts & Facts, 40(2), 6.Google Scholar
  49. Johnson, P. E. (1993). Darwin on trial (2nd ed.). Downers Grove, IL: InterVarsity Press.Google Scholar
  50. Jukes, T. (1983). Molecular evidence for evolution. In L. R. Godfrey (Ed.), Scientists confront creationism (pp. 117–138). New York: W.W. Norton & Company.Google Scholar
  51. Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217, 624–626.CrossRefGoogle Scholar
  52. Kitzmiller Trial Transcripts. (2005). http://ncse.com/creationism/legal/kitzmiller-trial-transcripts. Accessed October 27, 2013.
  53. Kjaergaard, P. C. (2011). ‘Hurrah for the missing link!’: A history of apes, ancestors and a crucial piece of evidence. Notes and Records of the Royal Society, 65, 83–98.CrossRefGoogle Scholar
  54. Kofahl, R. E., & Segraves, K. (1975). The creation explanation: A scientific alternative to evolution. Wheaton: Harold Shaw Publishers.Google Scholar
  55. Kofahl, R. E. & Segraves, K. (2003). The creation explanation. http://www.parentcompany.com/creation_explanation/cx.htm. Accessed October 27, 2013.
  56. Landau, M. (1989). Protein sequences and Denton’s error. Creation/Evolution Journal, 9, 1–7.Google Scholar
  57. Lanfear, R., Welch, J. J., & Bromham, L. (2010). Watching the clock: Studying variation in rates of molecular evolution between species. Trends in Ecology & Evolution, 25(9), 495–503.CrossRefGoogle Scholar
  58. Louchart, A., & Viriot, L. (2011). From snout to beak: The loss of teeth in birds. Trends in Ecology & Evolution, 26(12), 663–673.CrossRefGoogle Scholar
  59. Lynch, M. (2010). Evolution of the mutation rate. Trends in Genetics, 26(8), 345–352.CrossRefGoogle Scholar
  60. Margoliash, E. (1963). Primary structure and evolution of cytochrome c. Proceedings of the National Academy of Sciences, 50, 672–679.CrossRefGoogle Scholar
  61. Margoliash, E., & Fitch, W. (1968). Evolutionary variability of cytochrome c primary structures. Annals of the New York Academy of Sciences, 151, 359–381.CrossRefGoogle Scholar
  62. Margoliash, E., & Smith, E. L. (1965). Structural and functional aspects of cytochrome c in relation to evolution. In V. Bryson & H. J. Vogel (Eds.), Evolving genes and proteins (pp. 221–242). New York: Academic Press.CrossRefGoogle Scholar
  63. Margoliash, E., Smith, E. L., Kreil, G., & Tuppy, H. (1961). Amino-acid sequence of horse heart cytochrome c: The complete amino-acid sequence. Nature, 192, 1125–1127.CrossRefGoogle Scholar
  64. McLaughlin, P. J., & Dayhoff, M. O. (1973). Eukaryote evolution: A view based on cytochrome c sequence data. Journal of Molecular Evolution, 2, 99–116.CrossRefGoogle Scholar
  65. Mead, L. (2009). Transforming our thinking about transitional forms. Evolution: Education and Outreach, 2, 310–314.Google Scholar
  66. Meisel, R. P. (2010). Teaching tree-thinking to undergraduate biology students. Evolution: Education and Outreach, 3, 621–628.Google Scholar
  67. Miller, K. (1999). Of pandas and people: A brief critique. http://www.kcfs.org/pandas.html. Accessed October 27, 2013.
  68. Morgan, G. (1998). Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. Journal of the History of Biology, 31, 155–178.CrossRefGoogle Scholar
  69. Morris, H. M. (1984). History of modern creationism. San Diego: Master Book Publishers.Google Scholar
  70. Müller, J., & Reisz, R. (2005). Four well-constructed calibration points from the vertebrate fossil record for molecular clock estimates. BioEssays, 27(10), 1069–1075.CrossRefGoogle Scholar
  71. Nesbitt, S. J. (2011). The early evolution of archosaurs: Relationships and the origin of major clades. Bulletin of the American Museum of Natural History, 352, 1–292.CrossRefGoogle Scholar
  72. Nesbitt, S. J., Liu, J., & Li, C. (2010). A sail-backed suchian from the Heshanggou Formation (early Triassic: Olenekian) of China. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 101, 271–284.CrossRefGoogle Scholar
  73. Novick, L., Catley, K., & Funk, D. (2010). Characters as key: The effect of synapomorphies on cladogram comprehension. Evolution: Education and Outreach, 3, 539–547.Google Scholar
  74. Novick, L., Shade, C., & Catley, K. (2011). Linear versus branching depictions of evolutionary history: Implications for diagram design. Topics in Cognitive Science, 3(3), 536–559.CrossRefGoogle Scholar
  75. Padian, K. (2001). Cross-testing adaptive hypotheses: Phylogenetic analysis and the origin of bird flight. American Zoologist, 41(3), 598–607.CrossRefGoogle Scholar
  76. Padian, K. (2008). Trickle-down evolution: An approach to getting major evolutionary adaptive changes into textbooks and curricula. Integrative and Comparative Biology, 48(2), 175–188.CrossRefGoogle Scholar
  77. Padian, K., & Angielczyk, K. D. (1999). Are there transitional forms in the fossil record? In P. H. Kelley, J. R. Bryan, & T. A. Hansen (Eds.), The evolution–creation controversy II: Perspectives on science, religion, and geological education (pp. 47–82). Pittsburgh: The Paleontological Society.Google Scholar
  78. Padian, K., & Angielczyk, K. D. (2007). “Transitional forms” versus transitional features. In A. J. Petto & L. R. Godfrey (Eds.), Scientists confront intelligent design and creationism (pp. 197–230). New York: Norton.Google Scholar
  79. Padian, K., & Matzke, N. (2009). Darwin, Dover, ‘intelligent design’ and textbooks. Biochemical Journal, 417, 29–42.CrossRefGoogle Scholar
  80. Prothero, D. R. (2007). Evolution: What the fossils say and why it matters. New York: Columbia University Press.Google Scholar
  81. Pulquério, M. J. F., & Nichols, R. A. (2006). Dates from the molecular clock: How wrong can we be? Trends in Ecology & Evolution, 22(4), 180–184.CrossRefGoogle Scholar
  82. Rennie, J. (2002). 15 Answers to creationist nonsense. Scientific American, 287, 78–85.CrossRefGoogle Scholar
  83. Ridley, M. (1985). More Darwinian detractors. Nature, 318, 124–125.CrossRefGoogle Scholar
  84. Sarfati, J. (2002). Refuting evolution 2. Green Forrest, AR: Master Books.Google Scholar
  85. Schwabe, C. (2000). Molecular geneology. In: Madame Curie Bioscience Database [Internet]. Austin, TX: Landes Bioscience. http://www.ncbi.nlm.nih.gov/books/NBK6435/. Accessed October 27, 2013.
  86. Schwabe, C. (2001). The genomic potential hypothesis: A chemist’s view of the origins, evolution and unfolding of life. Georgetown, TX: Lands Bioscience.Google Scholar
  87. Scott, E. C., & Matzke, N. J. (2007). Biological design in science classrooms. Proceedings of the National Academy of Sciences, 104, 8669–8676.CrossRefGoogle Scholar
  88. Smith, E. L., & Margoliash, E. (1964). Evolution of cytochrome c. Federation Proceedings, 23, 1243–1247.Google Scholar
  89. Speith, P. T. (1987). Review of evolution a theory in crisis. Zygon, 22(2), 252–257.Google Scholar
  90. Stafford, T. (1997). The making of a revolution. Christianity Today, 41, 1416. http://www.christianitytoday.com/ct/1997/december8/7te016.html?paging=off. Accessed October 27, 2013.
  91. Strasser, B. J. (2010). Collecting, comparing, and computing sequences: The making of Margaret O. Dayhoff’s Atlas of protein sequence and structure, 1954–1965. Journal of the History of Biology, 43, 623–660.CrossRefGoogle Scholar
  92. The Parent Company. (2003a). http://www.parentcompany.com/about_us.asp. Accessed October 27, 2013.
  93. The Parent Company. (2003b). The creation explanation. http://www.parentcompany.com/creation_explanation/cx.htm. Accessed October 27, 2013.
  94. Thomas, J. A., Welch, J. J., Woolfit, M., & Bromham, L. (2006). There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proceedings of the National Academy of Sciences, 103(19), 7366–7371.CrossRefGoogle Scholar
  95. Toumey, C. P. (1994). God’s own scientists creationists in a secular world. New Brunswick, NJ: Rutgers University Press.Google Scholar
  96. Welch, J. J., & Bromham, L. (2005). Molecular dating when rates vary. Trends in Ecology & Evolution, 20(6), 320–327.CrossRefGoogle Scholar
  97. Wile, J. L. (2005). Evolution: The enemy of truth and science. http://www.youtube.com/watch?v=p-H4jQHvMmg. Accessed October 27, 2013.
  98. Wile, J. L., & Durnell, M. F. (1998). Exploring creation with biology. Cincinnati: Apologia Educational Ministries.Google Scholar
  99. Wile, J. L., & Durnell, M. F. (2005). Exploring creation with biology (2nd ed.). Kendallville, IN: Apologia Educational Ministries.Google Scholar
  100. Xu, X., & Guo, Y. (2009). The origin and early evolution of feathers: Insights from recent paleontological and neontological data. Vertebrata PalAsiatica, 47(4), 311–329.Google Scholar
  101. Xu, X., Zheng, X., & You, H. (2010). Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature, 464, 1338–1341.CrossRefGoogle Scholar
  102. Zhou, Z., Barrett, P. M., & Hiltons, J. (2003). An exceptionally preserved lower cretaceous ecosystem. Nature, 421, 807–814.CrossRefGoogle Scholar
  103. Zuckerkandl, E. (2006). Intelligent design and biological complexity. Gene, 385, 2–18.CrossRefGoogle Scholar
  104. Zuckerkandl, E., & Pauling, L. (1962). Molecular disease, evolution and genic heterogeneity. In M. Kasha & B. Pullman (Eds.), Horizons in biochemistry: Albert Szent-Gyorgyi dedicatory volume (pp. 189–225). New York: Academic Press.Google Scholar
  105. Zuckerkandl, E., & Pauling, L. (1965a). Molecules as documents of evolutionary history. Journal of Theoretical Biology, 8, 357–366.CrossRefGoogle Scholar
  106. Zuckerkandl, E., & Pauling, L. (1965b). Evolutionary divergence and convergence in proteins. In V. Bryson & H. J. Vogel (Eds.), Evolving genes and proteins (pp. 97–166). New York: Academic Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Liberal Studies DepartmentCalifornia State University FullertonFullertonUSA

Personalised recommendations