Advertisement

Science & Education

, Volume 23, Issue 7, pp 1531–1548 | Cite as

Explanatory Identities and Conceptual Change

  • Paul Thagard
Article

Abstract

Although mind-brain identity remains controversial, many other identities of ordinary things with scientific ones are well established. For example, air is a mixture of gases, water is H2O, and fire is rapid oxidation. This paper examines the history of 15 important identifications: air, blood, cloud, earth, electricity, fire, gold, heat, light, lightning, magnetism, salt, star, thunder, and water. This examination yields surprising conclusions about the nature of justification, explanation, and conceptual change.

Keywords

Good Explanation Conceptual Change Mechanistic Explanation Observational Identity Explanatory Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Thanks to Chris Eliasmith, Doreen Fraser and anonymous referees for comments on an earlier draft. This research was supported by the Natural Sciences and Engineering Research Council of Canada.

References

  1. Asimov, I. (1982). Asimov’s biographical encyclopedia of science and technology (2nd ed.). New York: Doubleday.Google Scholar
  2. Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. New York: Routledge.Google Scholar
  3. Blouw, P., Solodkin, E., Thagard, P., & Eliasmith, C. (forthcoming). Concepts as semantic pointers: A theory and computational model. Unpublished manuscript, University of Waterloo. Google Scholar
  4. Brock, W. H. (1981). Combusion. In W. F. Bynum, E. I. Browne, & R. Porter (Eds.), Dictionary of the history of science (pp. 72–73). Princeton: Princeton University Press.Google Scholar
  5. Bunge, M. (2003). Emergence and convergence: Qualitative novelty and the unity of knowledge. Toronto: University of Toronto Press.Google Scholar
  6. Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.Google Scholar
  7. Carey, S. (2009). The origin of concepts. Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), International handbook of research in conceptual change (pp. 61–82). New York: Routledge.Google Scholar
  9. Churchland, P. M. (1996). The rediscovery of light. Journal of Philosophy, 93, 211–222.CrossRefGoogle Scholar
  10. Churchland, P. S. (2002). Brain-wise: Studies in neurophilosophy. Cambridge, MA: MIT Press.Google Scholar
  11. Coulter, C. R. (2000). Encyclopedia of ancient deities. Jefferson, NC: McFarland.Google Scholar
  12. Eliasmith, C. (2013). How to build a brain. Oxford: Oxford University Press.CrossRefGoogle Scholar
  13. Fellbaum, C. (Ed.). (1998). WordNet: An electronic lexical database. Cambridge, MA: MIT Press.Google Scholar
  14. Findlay, S. D., & Thagard, P. (2012). How parts make up wholes. Frontiers in Physiology, 3. http://www.frontiersin.org/Journal/Abstract.aspx?s=1086&name=systems_biology&ART_DOI=10.3389/fphys.2012.00455. doi: 10.3389/fphys.2012.00455.
  15. Frisinger, H. H. (1977). The history of meteorology to 1800. New York: Science history publications.Google Scholar
  16. Graves, R. (1957). The Greek myths. New York: G. Braziller.Google Scholar
  17. Hajdu, S. I. (2003). A note from history: The discovery of blood cells. Annals of Clinical and Laboratory Science, 33, 237–238.Google Scholar
  18. Hammond, C. E. (1994). The interpretation of thunder. The Journal of Asian Studies, 53, 487–503.CrossRefGoogle Scholar
  19. Harman, G. (1973). Thought. Princeton: Princeton University Press.Google Scholar
  20. Harman, P. M. (1982). Energy, force, and matter: The conceptual development of nineteenth-century physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Hielbron, J. H. (1981). Electricity and magnetism. In W. F. Bynum, E. I. Browne, & R. Porter (Eds.), Dictionary of the history of science (pp. 113–115). Princeton: Princeton University Press.Google Scholar
  22. Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge, MA: MIT Press/Bradford Books.Google Scholar
  23. King, L. S. (1970). Stahl. In C. C. Gillispie (Ed.), Dictionary of scientific biography (Vol. 12, pp. 599–606). New York: New Scribner.Google Scholar
  24. Lipton, P. (2004). Inference to the best explanation (2nd ed.). London: Routledge.Google Scholar
  25. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.CrossRefGoogle Scholar
  26. May, J. G. (1981). Electron. In W. F. Bynum, E. I. Browne, & R. Porter (Eds.), Dictionary of the history of science (pp. 116–117). Princeton: Princeton University Press.Google Scholar
  27. McCormmach, R. (1970). Cavendish. In C. C. Gillispie (Ed.), Dictionary of scientific biography (Vol. 3, pp. 155–159). New York: Scribner.Google Scholar
  28. Murphy, G. L. (2002). The big book of concepts. Cambridge, MA: MIT Press.Google Scholar
  29. Parry, R. (2005). Empedocles. http://plato.stanford.edu/entries/empedocles/.
  30. Thagard, P. (1988). Computational philosophy of science. Cambridge, MA: MIT Press.Google Scholar
  31. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.Google Scholar
  32. Thagard, P. (1999). How scientists explain disease. Princeton: Princeton University Press.Google Scholar
  33. Thagard, P. (2000). Coherence in thought and action. Cambridge, MA: MIT Press.Google Scholar
  34. Thagard, P. (2008). Conceptual change in the history of science: Life, mind, and disease. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 374–387). London: Routledge.Google Scholar
  35. Thagard, P. (2010). The brain and the meaning of life. Princeton, NJ: Princeton University Press.Google Scholar
  36. Thagard, P. (2012). The cognitive science of science: Explanation, discovery, and conceptual change. Cambridge, MA: MIT Press.Google Scholar
  37. Thagard, P. (2014). Thought experiments considered harmful. Perspectives on Science, 22, 288–305.Google Scholar
  38. Thagard, P., & Stewart, T. C. (2011). The Aha! experience: Creativity through emergent binding in neural networks. Cognitive Science, 35, 1–33.CrossRefGoogle Scholar
  39. Thagard, P., & Zhu, J. (2003). Acupuncture, incommensurability, and conceptual change. In G. M. Sinatra & P. R. Pintrich (Eds.), Intentional conceptual change (pp. 79–102). Mahwah, NJ: Erlbaum.Google Scholar
  40. Wheaton, B. W. (1981a). Heat and thermodynamics. In W. F. Bynum, E. I. Browne, & R. Porter (Eds.), Dictionary of the history of science (pp. 179–182). Princeton: Princeton University Press.Google Scholar
  41. Wheaton, B. W. (1981b). Light. In W. F. Bynum, E. I. Browne, & R. Porter (Eds.), Dictionary of the history of science (pp. 234–236). Princeton: Princeton University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations