Science & Education

, Volume 24, Issue 1–2, pp 151–172 | Cite as

Mendel in the Modern Classroom



Mendel is an icon in the history of genetics and part of our common culture and modern biology instruction. The aim of this paper is to summarize the place of Mendel in the modern biology classroom. In the present article we will identify key issues that make Mendel relevant in the classroom today. First, we recount some of the historical controversies that have relevance to modern curricular design, such as Fisher’s (Ann Sci 1:115–137, 1936/2008) claim that Mendel’s data were too good to be true. We also address questions about Mendel’s status as the father of genetics as well as questions about the sequencing of Mendel’s work in genetics instruction in relation to modern molecular genetics and evolution. Next, we present a systematic set of examples of research based approaches to the use of Mendel in the modern classroom along with criticisms of these designs and questions about the historical accuracy of the story of Mendel as presented in the typical classroom. Finally, we identify gaps in our understanding in need of further study and present a selected set of resources that, along with the references cited, should be valuable to science educators interested in further study of the story of Mendel.


  1. Allchin, D. (2003). Scientific myth-conceptions. Science Education, 87, 329–351.CrossRefGoogle Scholar
  2. Allchin, D. (2012). Round vs. wrinkled: Mendel, dominance, and the nature of science. Available from the author: Association for the Advancement of Science (2013). Topic: Evolution and natural selection. Accessed June 10, 2013.
  3. Armstead, I., Donnison, I., Aubry, S., Harper, J., Hörtensteiner, S., James, C., et al. (2007). Cross-species identification of Mendel’s I locus. Science, 315, 73.CrossRefGoogle Scholar
  4. Authors (in preparation). Students need to understand evolution. Or do they?Google Scholar
  5. Bateson, W. (1902). The facts of heredity in the light of Mendel’s discovery. Reports to the Evolution Committee of the Royal Society, London, 1, 125–160.Google Scholar
  6. Bateson, W. (1909). Mendel’s principles of heredity. Cambridge: Cambridge University Press.Google Scholar
  7. Bhattacharyya, M. K., Smith, A. M., Ellis, T. H. N., Hedley, C., & Martin, C. (1990). The wrinkled-see character of Pea describe by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell, 60, 115–122.CrossRefGoogle Scholar
  8. Bizzo, N. (1999). On the different interpretations of the historical and logical development of the scientific understanding of evolution. In Toward scientific literacy, Proceedings of the IV HPSST conference (pp. 99–112). Faculty of education, University of Calgary, Canada.Google Scholar
  9. Bizzo, N., & El-Hani, C. N. (2009). Darwin and Mendel: Evolution and genetics. Journal of Biological Education, 43(3), 108–114.CrossRefGoogle Scholar
  10. Burian, R. M. (2013). On gene concepts and teaching genetics: Episodes from classical genetics. Science & Education, 22, 325–344.CrossRefGoogle Scholar
  11. Callender, L. A. (1988). Gregor Mendel: An opponent of descent with modification. History of Science, 26, 41–57.Google Scholar
  12. Castéra, J., Clément, P., & Abrougui, M. (2008). Genetic determinism in school textbooks: A comparative study among sixteen countries. Science Education International, 19(2), 163–184.Google Scholar
  13. Clough, M. P. (2011). The story behind the science: Bringing science and scientists to life in post-secondary science education. Science & Education, 20(7), 701–717.CrossRefGoogle Scholar
  14. Clough, M. P., Herman, B. C., & Smith, J. A. R. (2010). Seamlessly teaching science content and the nature of science. Paper presented at the annual meeting of the Association for Science Teacher Education, Sacramento, CA.Google Scholar
  15. Corcos, A., & Monaghan, F. (1985). Some myths about Mendel’s experiments. American Biology Teacher, 47(4), 233–236.CrossRefGoogle Scholar
  16. Correns, C. (1900). G. Mendel’s law concerning the behavior of progeny of varietal hybrids. First published in English as: Correns, C., 1950. G. Mendel’s law concerning the behavior of progeny of varietal hybrids. Genetics, 35(5, pt 2):33–41. Originally published as: Correns, C. 1900. G. Mendels Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte der Deutschen Botanischen Gesellschaft, 18: 158–168.Google Scholar
  17. Di Trocchio, F. (1991). Mendel’s experiments: A reinterpretation. Journal of the History of Biology, 24, 485–519.CrossRefGoogle Scholar
  18. DiGisi, L. L., & Wilett, J. B. (1995). What high school biology teachers say about their textbook use: A descriptive study. Journal of Research in Science Teaching, 32(2), 123–142.CrossRefGoogle Scholar
  19. Dougherty, M. J. (2009). Closing the gap: Inverting the genetics curriculum to ensure an informed public. American Journal of Human Genetics, 85, 1–7.CrossRefGoogle Scholar
  20. Dougherty, M. J., Pleasants, C., Solow, L., Wong, A., & Zhang, H. (2011). A comprehensive analysis of high school genetics standards: Are states keeping pace with modern genetics? CBE-Life Sciences Education, 10, 318–327.CrossRefGoogle Scholar
  21. Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understanding of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959.CrossRefGoogle Scholar
  22. Dunn, L. C. (1965). A short history of genetics. New York: McGraw-Hill.Google Scholar
  23. Fairbanks, D. J. (2008). Mendelian controversies—An update. In A. Franklin, A. W. F. Edwards, D. J. Fairbanks, D. L. Hartl, & T. Seidenfeld (Eds.), Ending the mendel-fisher controversy (pp. 302–311). Pittsburgh: University of Pittsburgh Press.Google Scholar
  24. Fairbanks, D. J., & Rytting, B. (2001). Mendelian controversies: A botanical and historical review. American Journal of Botany, 88, 737–752.CrossRefGoogle Scholar
  25. Falk, R. (1986). What is a gene? Studies in History and Philosophy of Science, 17(2), 133–173.CrossRefGoogle Scholar
  26. Falk, R., & Sarkar, S. (1991). The real objective of Mendel’s paper: A response to Monaghan and Corcos. Biology and Philosophy, 6, 447–451.CrossRefGoogle Scholar
  27. Fisher, R. A. (1936/2008). Has Mendel’s work been rediscovered? Annals of Science, 1, 115–137. Reprinted 2008 in A. Franklin, A. W. F. Edwards, D. J. Fairbanks, D. L. Hartl, & T. Seidenfeld (Eds.), Ending the mendel-fisher controversy (pp. 117–140). Pittsburgh: University of Pittsburgh Press.Google Scholar
  28. Focke, W. O. (1881). Die pflanzen-mischlinge; ein beitrag zur biologie der gewächse. Berlin: Gebrüder Borntraeger.Google Scholar
  29. Fogle, T. (1990). Are genes units of inheritance? Biology and Philosophy, 5(3), 349–371.CrossRefGoogle Scholar
  30. Franklin, A. (2008). The mendel-fisher controversy. In A. Franklin, A. W. F. Edwards, D. J. Fairbanks, D. L. Hartl, & T. Seidenfeld (Eds.), Ending the mendel-fisher controversy (pp. 1–77). Pittsburgh: University of Pittsburgh Press.Google Scholar
  31. Galton, D. (2009). Did Darwin read Mendel? QJM, 102(8), 587–589.CrossRefGoogle Scholar
  32. Gericke, N. M., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16(7–8), 849–881.CrossRefGoogle Scholar
  33. Gericke, N. M., & Hagberg, M. (2010a). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40(4), 605–623.CrossRefGoogle Scholar
  34. Gericke, N. M., & Hagberg, M. (2010b). Conceptual variation in the depiction of gene function in upper secondary school textbooks. Science & Education, 19(10), 963–994.CrossRefGoogle Scholar
  35. Gericke, N. M., Hagberg, M., & Jorde, D. (2013). Upper secondary students’ understanding of the use of multiple models in biology textbooks—The importance of conceptual variation and incommensurability. Research in Science Education, 43(2), 755–780.CrossRefGoogle Scholar
  36. Gericke, N. M., Hagberg, M., Santos, V. C., Joaquim, L. M., & El-Hani, C. N. (2012). Conceptual variation or incoherence? Textbook discourse on genes in six countries. Science & Education,. doi:10.1007/s11191-012-9499-8.Google Scholar
  37. Gericke, N., & Smith, M. U. (in press). 21st century genetics and genomics: Contributions of HPS–informed research and pedagogy. In M. Matthews (Ed.), Handbook of historical and philosophical research in science education. New York: Springer.Google Scholar
  38. Gericke, N. M., & Wahlberg, S. (2013). Clusters of concepts in molecular genetics: A study of Swedish upper secondary science students’ understanding. Journal of Biological Education, 47(2), 73–83.CrossRefGoogle Scholar
  39. Glynn, S. M., Duit, R., & Thiele, R. B. (1995). Teaching science with analogies: A strategy for constructing knowledge. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 247–273). Mahwah, NJ: Erlbaum.Google Scholar
  40. Goldschmidt, R. B. (1954). Different philosophies of genetics. Science, 119, 703–710.CrossRefGoogle Scholar
  41. Hartl, D. L., & Fairbanks, D. J. (2007). Mud sticks: On the alleged falsification of Mendel’s data. Genetics, 175, 975–979.Google Scholar
  42. Hartl, D. L., & Orel, V. (1992). What did Mendel think he discovered. Genetics, 131, 245–253.Google Scholar
  43. Hellens, R. P., Moreau, C., Lin-Wang, K., Schwinn, K. E., Thomson, S. J., Fiers, M. W. E. J., et al. (2010). Identification of Mendel’s white flower character. PLoS One, 5(10), 1–8.CrossRefGoogle Scholar
  44. Henig, R. M. (2000). The monk in the garden. Boston: Houghton Mifflin.Google Scholar
  45. Henson, K., Cooper, M. M., & Klymkowsky, M. W. (2012). Turning randomness into meaning at the molecular level using Muller’s morphs. Biology Open,. doi:10.1242/bio.2012031.Google Scholar
  46. Hott, A. M., Huether, C. A., McInerney, J. D., Christianson, C., Fowler, R., Bender, R., et al. (2002). Genetics content in introductory biology courses for non-science majors: Theory and practice. BioScience, 52, 1024–1035.CrossRefGoogle Scholar
  47. Hull, D. L. (2002). Varieties of reductionism: Derivation and gene selection. In M. H. V. Regenmortel & D. L. Hull (Eds.), Promises and limits of reductionism in the biomedical sciences (pp. 161–173). Chichester: Wiley.CrossRefGoogle Scholar
  48. Jackson, J., Dukerich, L., & Hestenes, D. (2008). Modeling instruction: An effective model for science education. Science Educator, 17(1), 10–17.Google Scholar
  49. Johannsen, W. (1909) Elemente der exakten Erblichkeitslehre. Jena, Germany: Gustav Fischer. Full text available at Accessed May 29, 2013.
  50. Johannsen, W. (1923). Some remarks about units in heredity. Hereditas, 4(1-2), 133–141.Google Scholar
  51. Johnson, V., Naele, D. C., & Smith, D. (1990). Implementing conceptual change teaching in primary science. The Elementary School Journal, 91(2), 109–131.CrossRefGoogle Scholar
  52. Johnson, S. K., & Stewart, J. (2002). Revising and assessing explanatory models in a high school genetics class: A comparison of unsuccessful and successful performance. Science Education, 86(4), 463–480.CrossRefGoogle Scholar
  53. Kampourakis, K. (2011). Mendel and the path to genetics: Portraying science as a social process. Science & Education,. doi:10.1007/s11191-010-9323-2.Google Scholar
  54. Kampourakis, K. (2013). Mendel and the path to Genetics: Portraying science as a social process. Science & Education, 22(2), 293–324.CrossRefGoogle Scholar
  55. Keller, E. F. (2009). Century of the gene. Cambridge, MA: Harvard University Press.Google Scholar
  56. Lanie, A. D., Jayarante, T. E., Sheldon, J. P., Kardia, S. L. R., Anderson, E. S., Feldbaum, M., et al. (2004). Exploring the public understanding of basic genetic concepts. Journal of Genetic Counseling, 13(4), 305–320.CrossRefGoogle Scholar
  57. Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: Re-visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195–206.CrossRefGoogle Scholar
  58. Lewis, J., Leach, J., & Wood-Robinson, C. (2000). All in the genes? Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74–79.CrossRefGoogle Scholar
  59. Limon, M., & Mason, L. (2002). Reconsidering conceptual change: Issues in theory and practice (pp. 61–76). Dordrecht: Kluwer.CrossRefGoogle Scholar
  60. Lonsbury, J. G., & Ellis, J. D. (2002). Science history as a means to teach nature of science concepts: Using the development or understanding related to mechanisms of inheritance. Electronic Journal of Science Education, 7(2). Article 0002. Accessed June 10, 2013 from
  61. Marbach-Ad, G. (2001). Attempting to break the code in student comprehension of genetic concepts. Journal of Biological Education, 35(4), 183–189.CrossRefGoogle Scholar
  62. Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.Google Scholar
  63. Mayr, E. (1982). The growth of biological thought: Diversity, evolution and inheritance. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
  64. Mendel, G. (1866/2008). Versuche über Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865, Abhandlungen, 3–47. Reprinted translation by Royal Horticultural society in 2008 In A. Franklin, A. W. F. Edwards, D. J. Fairbanks, D. L. Hartl, & T. Seidenfeld (Eds.), Ending the mendel-fisher controversy (pp. 78–116). Pittsburgh: University of Pittsburgh Press.Google Scholar
  65. Monaghan, F. V., & Corcos, A. (1990). The real objective of Mendel’s paper. Biology and Philosophy, 5, 267–292.CrossRefGoogle Scholar
  66. Moody, D. E. (2000). The paradox of the textbook. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge (pp. 167–184). Dordrecht: Kluwer Academic Publishers.Google Scholar
  67. Moore, R. (2001). The “rediscovery” of Mendel’s work. BioScience, 27(2), 13–24.Google Scholar
  68. Morgan, T. H. (1933). The relation of genetics to physiology and medicine. In H. Grünewald (Ed.), Nobel lectures. Physiology and medicine 1922–1941 (pp. 313–328). Amsterdam: Elsevier.Google Scholar
  69. Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 85–97). Cambridge, MA: MIT Press.Google Scholar
  70. Moss, L. (2003). What genes can’t do. Cambridge: MIT Press.Google Scholar
  71. Muller, H. J. (1922). Variation due to change in the individual gene. American Naturalist, 56, 32–50.CrossRefGoogle Scholar
  72. Offner, S. (2011). Mendel’s peas & the nature of the gene: Genes code for proteins & proteins determine phenotype. American Biology Teacher, 72(7), 382–387.CrossRefGoogle Scholar
  73. Olby, R. (1979). Mendel not Mendelian? History of Science, 17, 53–72.Google Scholar
  74. Olby, R. (1985). Origins of Mendelism (2nd ed.). Chicago IL: University of Chicago Press.Google Scholar
  75. Olby, R. (2009). Variation and inheritance. In M. Ruse & R. J. Richards (Eds.), Cambridge companion to the “Origin of species” (pp. 30–46). Cambridge: Cambridge University Press.Google Scholar
  76. Olby, R., & Gautrey, P. (1968). Eleven references to Mendel before 1900. Annals of Science, 24, 7–20.CrossRefGoogle Scholar
  77. Orel, V. (1996). Gregor Mendel: The first geneticist. Oxford: University of Oxford Press.Google Scholar
  78. Rasmusson, J. (1927). Genetically changed linkage values in Pisum. Hereditas, 10, 1–150.CrossRefGoogle Scholar
  79. Redfield, R. J. (2012). “Why do we have to learn this stuff?” A new genetics for 21st century students. PLoS Biology, 10(7), e1001356. doi:10.1371/journal.pbio.1001356.CrossRefGoogle Scholar
  80. Reid, J. B., & Ross, J. J. (2011). Mendel’s genes: Toward a full molecular characterization. Genetics, 189, 3–10.CrossRefGoogle Scholar
  81. Rubba, P.A. (1977). Nature of scientific knowledge scale. Test and user’s manual. East Lansing, MI: National Center for Research on Teacher Learning. (ERIC Document Reproduction Service No. ED 146 225).Google Scholar
  82. Sadler, I. (1983). Pier Louis Moreande Maupertuis, A precursor of Mendel? Journal of the History of Biology, 16, 101–136.Google Scholar
  83. Santos, V. C., Joaquim, L. M., & El-Hani, C. N. (2012). Hybrid deterministic views about genes in biology textbooks: A key problem in genetics teaching. Science & Education, 21(4), 543–578.CrossRefGoogle Scholar
  84. Sarkar, S. (2002). Genes versus molecules: How to, and how not to, be a reductionist. In M. H. V. Regenmortel & D. L. Hull (Eds.), Promises and limits of reductionism in the biomedical sciences (pp. 191–209). Chichester: Wiley.CrossRefGoogle Scholar
  85. Sato, Y., Morita, R., Nishimura, M., Yamaguchi, H., & Kusaba, M. (2007). Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proceedings of the National Academy of Science, 104, 14169–14174.CrossRefGoogle Scholar
  86. Schlater, A. (2006). The extent of Charles Darwin’s knowledge of Mendel. Journal of Biosciences, 31, 191–193.CrossRefGoogle Scholar
  87. Shaw, K. E., Horne, K. V., Zhang, H., & Boughman, J. (2008). Essay contest reveals misconceptions of high school students in genetics content. Genetics, 178, 1157–1168.CrossRefGoogle Scholar
  88. Sjøberg, S. (1998). Naturfag som allmenndannelse: En kritisk fagdidaktikk. Oslo: Gyldendal.Google Scholar
  89. Smith, M. U. (1988). Successful and unsuccessful problem solving in classical genetic pedigrees. Journal of Research in Science Teaching, 25, 411–433.CrossRefGoogle Scholar
  90. Smith, M. U., & Adkison, L. R. (2010). Updating the model definition of the gene in the modern genomic era with implications for instruction. Science & Education, 19(1), 1–20.CrossRefGoogle Scholar
  91. Smith, M. U., & Good, R. (1984). Problem solving and classical genetics: Successful vs. unsuccessful performance. Journal of Research in Science Teaching, 21, 895–912.CrossRefGoogle Scholar
  92. Smith, A. L., & Williams, M. J. (2007). “It’s the X and Y thing”: Cross-sectional and longitudinal changes in children’s understanding of genes. Research in Science Education, 37(4), 407–422.CrossRefGoogle Scholar
  93. Venville, G., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031–1055.CrossRefGoogle Scholar
  94. von Tschermak, E. (1900). Concerning artificial crossing in Pisum sativum. First published in English as: Tschermak, E. 1950. Concerning artificial crossing in Pisum sativum. Genetics, 35(5, pt 2): 42–47. Originally published as: Tschermak, E. (1900). Über Künstliche Kreuzung bei Pisum sativum. Berichte der Deutsche Botanischen Gesellschaft, 18, 232–239.Google Scholar
  95. Vorzimmer, P. (1968). Darwin & Mendel: The historical connection. Isis, 59(1), 77–82.CrossRefGoogle Scholar
  96. Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738.CrossRefGoogle Scholar
  97. Weismann, A. (1889). Essays upon heredity and kindred biological problems. Oxford: Clarendon Press.Google Scholar
  98. Westerlund, J., & Fairbanks, D. J. (2004). Gregor Mendel and “myth-conceptions”. Science Education, 88, 754–758.CrossRefGoogle Scholar
  99. Westerlund, J. F., & Fairbanks, D. J. (2010). Gregor Mendel’s classic paper and the nature of science in genetics courses. Hereditas, 147, 293–303.CrossRefGoogle Scholar
  100. Zirkle, C. (1964). Some oddities in the delayed discovery of Mendelism. Journal of Heredity, 55, 65–72.Google Scholar
  101. Zwart, H. (2008). Understanding the human genome project: A biographical approach. New Genetics & Society, 27(4), 353–376.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Departments of Community Medicine and Internal MedicineMercer University School of MedicineMaconUSA
  2. 2.Department of BiologyKarlstad UniversityKarlstadSweden

Personalised recommendations