Science & Education

, Volume 22, Issue 9, pp 2173–2191 | Cite as

Designing Authentic Learning Environments in Chemistry Lessons: Paving the Way in Pre-Service Teacher Education



Authenticity has recently become a popular term in science education. A study focusing on authenticity in the sense of making chemistry lessons better resemble chemistry practice is carried out at the University of Cologne in the Institute of Chemical Education, where prospective chemistry teachers are trained. In the long run an innovative module shall be developed, which challenges teacher students’ pre-conceptions about characteristics of chemistry practice and supports them in translating their conceptions into authentic learning environments. This paper presents the first part of the project in which course elements to stimulate reflection on students’ attitudes were evaluated. Moreover the students were given an opportunity for teacher students to create a practical activity for pupils in order to detect aspects in which the students need more support, for example possible ways for this transformation or more experience with inquiry-based learning.


  1. Aikenhead, G. S. (2004). Science communication with the public: A cross-cultural event. In J. K. Gilbert (Ed.), The RoutledgeFalmer reader in science education (pp. 149–167). London: RoutledgeFalmer.Google Scholar
  2. Akerson, V. L., Morrison, J. A., & Roth McDuffie, A. (2006). One course is not enough: Preservice elementary teachers’ retention of improved views of nature of science. Journal of Research in Science Teaching, 43(2), 194–213.CrossRefGoogle Scholar
  3. American Association for the Advancement of Science. (1990). Project 2061: Science for all Americans. New York: Oxford University Press.Google Scholar
  4. Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers’ conceptions of the nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701.CrossRefGoogle Scholar
  5. Barab, S. A., Squire, K. D., & Dueber, W. (2000). A co-evolutionary model supporting the emergence of authenticity. Educational Technology Research and Development, 48(2), 37–62.CrossRefGoogle Scholar
  6. Bell, R. L., Blair, L. M., Crawford, B. A., & Lederman, N. G. (2003). Just do it? Impact of a science apprenticeship program on high school students’ understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487–509.CrossRefGoogle Scholar
  7. Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30–33.Google Scholar
  8. Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.CrossRefGoogle Scholar
  9. Bruns, J. (2009). Auf dem Weg zur Förderung naturwissenschaftsspezifischer Vorstellungen von zukünftigen Chemie-Lehrenden: Chancen und Grenzen eines kombinierten theoretisch-expliziten und praktisch-reflektierten Ansatzes. Univ., Diss.Köln. Berlin: Logos-Verlag.Google Scholar
  10. Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218.CrossRefGoogle Scholar
  11. Edelson, D. C. (1998). Realising authentic science learning through the adaptation of scientific practice. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 317–332). Dordrecht: Kluwer.CrossRefGoogle Scholar
  12. Erduran, S. (2001). Philosophy of chemistry: An emerging field with implications for chemistry education. Science & Education, 10(6), 581–593.CrossRefGoogle Scholar
  13. Erduran, S. (2007). Breaking the law: Promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry, 9(3), 247–263.CrossRefGoogle Scholar
  14. Erduran, S., Bravo, A. A., & Mamlok-Naaman, R. (2007). Developing epistemologically empowered teachers: Examining the role of philosophy of chemistry in teacher education. Science & Education, 16(9–10), 975–989.CrossRefGoogle Scholar
  15. Floriano, M. A., Reiners, C. S., Markic, S., & Avitabile, G. (2009). The uniqueness of teaching and learning chemistry. In I. Eilks & B. Byers (Eds.), Innovative Methods of Teaching and Learning Chemistry in Higher Education. Changing to support a knowledge-based economy (pp. 23–42). Cambridge: RSC Publ./Springer.Google Scholar
  16. Fox, K. (2006). Authentic alternatives to practical work. School Science Review, 88(322), 45–51.Google Scholar
  17. France, B., & Bay, J. L. (2010). Questions students ask: Bridging the gap between scientists and students in a research institute classroom. International Journal of Science Education, 32(2), 173–194.CrossRefGoogle Scholar
  18. Gläser, J., & Laudel, G. (2009). Experteninterviews und qualitative Inhaltsanalyse als Instrumente rekonstruierender Untersuchungen. Wiesbaden: VS Verlag für Sozialwissenschaften.Google Scholar
  19. Hodson, D. (1998). Is this really what scientist do? Seeking a more authentic science in and beyond the school laboratory. In J. Wellington (Ed.), Practical work in school science: Which way now? (pp. 93–108). London: RoutledgeFalmer.Google Scholar
  20. Hoffmann, R. (2007). What might philosophy of science look like if chemists built it? Synthese, 155(3), 321–336.CrossRefGoogle Scholar
  21. Hoffmann, R., & Laszlo, P. (1991). Representations in chemistry. Angewandte Chemie (International Edition in English), 30(1), 1–16.CrossRefGoogle Scholar
  22. Hoffmann, R., & Torrence, V. (1993). Chemistry imagined: Reflections on science. Washington: Smithsonian Institution Press.Google Scholar
  23. Höttecke, D., & Rieß, F. (2007). Rekonstruktion der vorstellungen von physikstudierenden über die natur der naturwissenschaften–eine explorative studie. Physik und Didaktik in Schule und Hochschule, 6(1), 1–14.Google Scholar
  24. Johnstone, A. H. (2000). Teaching of chemistry: Logical or psychological? Chemistry Education: Research and Practice in Europe, 1(1), 9–15.CrossRefGoogle Scholar
  25. Johnstone, A. H. (2010). You can’t get there from here. Journal of Chemical Education, 87(1), 22–29.CrossRefGoogle Scholar
  26. Khishfe, R. (2008). The development of seventh graders’ views of nature of science. Journal of Research in Science Teaching, 45(4), 470–496.CrossRefGoogle Scholar
  27. Klenowski, V. (2002). Developing portfolios for learning and assessment: Processes and principles. London: RoutledgeFalmer.Google Scholar
  28. Lakin, S., & Wellington, J. (1994). Who will teach the ‘nature of science’? Teachers’ views of science and their implications for science education. International Journal of Science Education, 16(2), 175–190.CrossRefGoogle Scholar
  29. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  30. Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331–359.CrossRefGoogle Scholar
  31. Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  32. Lee, H.-S., & Butler, N. (2003). Making authentic science accessible to students. International Journal of Science Education, 25(8), 923–948.CrossRefGoogle Scholar
  33. Martin, B., Kass, H., & Brouwer, W. (1990). Authentic science: A diversity of meanings. Science Education, 74(5), 541–554.CrossRefGoogle Scholar
  34. Mayring, P. (2002). Qualitative content analysis: Research instrument or mode of interpretation? In M. Kiegelmann (Ed.), The role of the researcher in qualitative psychology (pp. 139–148). Tübingen: Huber-Verlag.Google Scholar
  35. Mayring, P. (2008). Qualitative inhaltsanalyse: Grundlagen und Techniken. Weinheim: Beltz.Google Scholar
  36. McComas, W. F., & Olson, J. K. (1998). The nature of science in international science education standards documents. In W. F. McComas (Ed.), The Nature of Science in Science Education. Rationales and Strategies (pp. 41–52). Dordrecht: Kluwer.Google Scholar
  37. Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction-what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.CrossRefGoogle Scholar
  38. Olmsted, J, I. I. I. (2010). What chemists do. Journal of Chemical Education, 87(10), 1045–1049.CrossRefGoogle Scholar
  39. Parchmann, I., & Kaufmann, H. (2006). Kompetenzen entwickeln: Wie Bildungsstandards zu einer Chance für Schulentwicklung werden können. Naturwissenschaften im Unterricht Chemie, 17(94/95), 4–9.Google Scholar
  40. Programme for International Student Assessment. (2003). The PISA 2003 assessment framework: Mathematics, reading, science and problem solving knowledge and skills. Paris: OECD.Google Scholar
  41. Reiners, C. S. (2000). Chemiedidaktik–Quo vadis? CHEMKON, 7(2), 91–92.CrossRefGoogle Scholar
  42. Risch, B. (2010). Germany. In B. Risch (Ed.), Teaching chemistry around the world (pp. 267–279). Münster: Waxmann Verlag GmbH.Google Scholar
  43. Roth, W.-M. (1998). Authentic school science: Knowing and learning in open-inquiry science laboratories. Dordrecht: Kluwer.Google Scholar
  44. Schecker, H., & Parchmann, I. (2007). Standards and Competence Models: The German Situation. In D. J. Waddington (Ed.), Standards in Science Education. Making it Comparable (pp. 147–164). Münster: Waxmann.Google Scholar
  45. Schummer, J. (2006). The philosophy of chemistry: From infancy toward maturity. In D. Baird, E. Scerri, & L. McIntrye (Eds.), Philosophy of Chemistry. Synthesis of a new discpline (pp. 19–39). Dordrecht: Springer.Google Scholar
  46. Schummer, J. (2010). Philosophy of chemistry. In F. Allhoff (Ed.), Philosophies of the sciences. A guide (pp. 163–183). Wiley-Blackwell.Google Scholar
  47. Schwartz, R. S., & Crawford, B. A. (2006). Authentic scientific inquiry as context for teaching nature of science: Identifying critical elements for success. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning and teacher education (pp. 331–356). Dordrecht: Springer.Google Scholar
  48. Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (Ed.) (2005). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss (Jahrgangsstufe 10): Beschluss vom 16.12.2004 (Beschlüsse der Kultusministerkonferenz). Neuwied: Luchterhand.Google Scholar
  49. van Dijk, E. M. (2011). Portaying real science in science communication. Science Education, 95(6), 1086–1100.CrossRefGoogle Scholar
  50. Wade, R. C., & Yarbrough, D. B. (1996). Portfolios: A tool for reflective thinking in teacher education? Teaching & Teacher Education, 12(1), 63–79.CrossRefGoogle Scholar
  51. Wenning, C. J. (2006). A framework for teaching the nature of science. Journal of Physics Teacher Education Online, 3(3), 3–10.Google Scholar
  52. Wiesner, H., & Hopf, M. (Eds.) (2004). Schülerversuche: Authentisch, offen, aktivierend. Praxis der NaturwissenschaftenPhysik in der Schule, 53(6), Ges. Themenheft.Google Scholar
  53. Woolnough, B. E. (1998). Authentic science in schools, to develop personal knowledge. In J. Wellington (Ed.), Practical work in school science: Which way now? (pp. 109–125). London: RoutledgeFalmer.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of Chemistry EducationUniversity of CologneKölnGermany

Personalised recommendations