Advertisement

Science & Education

, Volume 22, Issue 5, pp 1043–1068 | Cite as

Could HPS Improve Problem-Solving?

  • Ricardo Lopes Coelho
Article

Abstract

It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students’ careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

Keywords

Incline Plane Free Fall Gravitational Mass Simple Pendulum Local Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, G. (1794). Lectures on natural and experimental philosophy (Vol. III). London: Hindmarsh.Google Scholar
  2. Alonso, M., & Finn, E. J. (1992). Physics. Wokingham: Addison-Wesley.Google Scholar
  3. Atwood, G. (1784). A treatise on rectilinear motion and rotation of bodies: With description of original experiments relative to the subject. Cambridge: Merril and Deighton.Google Scholar
  4. Avery, E. M. (1885). Elements of natural philosophy. New York, Chicago: Sheldon and Company.Google Scholar
  5. Bailin, S. (2002). Critical thinking and science education. Science & Education, 11, 361–375.CrossRefGoogle Scholar
  6. Bergmann, L., & Schaefer, C. (1998). Lehrbuch der Experimentalphysik I: Mechanik, Akustik, Wärme (11th ed.). Berlin, New York: de Gruyter.Google Scholar
  7. Blatt, F. J. (1989). Principles of physics (3rd ed.). Boston, London: Allyn and Bacon.Google Scholar
  8. Bliss, J., & Ogborn, J. (1994). Force and motion from the beginning. Learning and Instruction, 4, 7–25.CrossRefGoogle Scholar
  9. Bueche, F. J., & Jerde, D. (1995). Principles of physics. New York: McGraw-Hill.Google Scholar
  10. Carson, R., & Rowlands, S. (2005). Mechanics as the logical point of entry for the enculturation into scientific thinking. Science & Education, 14, 473–493.CrossRefGoogle Scholar
  11. Coelho, R. L. (2010). On the concept of force: How understanding its history can improve physics teaching. Science & Education, 19, 91–113.CrossRefGoogle Scholar
  12. Coelho, R. L. (2011). Conceptual problems in the foundations of mechanics. Science & Education. doi: 10.1007/s11191-010-9336-x.
  13. Coelho, R. L. (2012). On the definition of mass in mechanics: Why is it so difficult? The Physics Teacher, 50, 304–306.CrossRefGoogle Scholar
  14. Crew, H. (1900). The elements of physics. New York, London: The Macmillan Compony.Google Scholar
  15. Cutnell, J. D., & Johnson, K. W. (1992). Physics. New York: Wiley.Google Scholar
  16. Daniel, H. (1997). Physik I: Mechanik, Wellen, Wärme. Berlin, New York: de Gruyter.CrossRefGoogle Scholar
  17. Desaguliers, J. T. (1719). Lectures of experimental philosophy. London: printed for W. Mears, B. Creake and J. Sackfield.Google Scholar
  18. Doménech, J. L., Gil-Pérez, D., Gras-Marti, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., et al. (2007). Teaching energy issues: A debate proposal for a global reorientation. Science & Education, 16, 43–64.CrossRefGoogle Scholar
  19. Dransfeld, K., Kienle, P., & Kalvius, G. M. (2001). Physik I: Mechanik und Wärme (9th ed.). München: Oldenbourg.Google Scholar
  20. Emerson, W. (1800). The principles of mechanics. London: G.G. and J. Robinson.Google Scholar
  21. Euler, L. (1750 (1752)). Découverte d’un Nouveau Principe de Mecanique. Mémoires de l’académie des sciences de Berlin, 6, 185–217. Opera Omnia, serie II (Vol. 5, pp. 81–108).Google Scholar
  22. Faughn, J., Serway, R., Vuille, C., & Bennett, C. (2006). Serway’s college physics. Belmont, CA: Thomson.Google Scholar
  23. Fishbane, P. M., Gasiorowicz, S., & Thornton, S. T. (1996). Physics for scientists and engineers. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  24. Fließbach, T. (2007). Lehrbuch zur theoretischen Mechanik 1: Mechanik (5th ed.). Heidelberg, Berlin, Oxford: Spektrum Akademischer Verlag.Google Scholar
  25. French, A. P. (1971). Newtonian mechanics. New York, London: W. W. Norton.Google Scholar
  26. French, A. P. (1983). Is g really the acceleration due to gravity? The Physics Teacher, 21, 528–529.CrossRefGoogle Scholar
  27. Galili, I. (1993). Weight and gravity: Teachers’ ambiguity and students’ confusion about the concepts. International Journal of Science Education, 15, 149–162.CrossRefGoogle Scholar
  28. Galili, I. (1995). Interpretation of students’ understanding of the concept of weightlessness. Research in Science Education, 25, 51–74.CrossRefGoogle Scholar
  29. Galili, I. (2001). Weight versus gravitational force: Historical and educational perspectives. International Journal of Science Education, 23, 1073–1093.CrossRefGoogle Scholar
  30. Galili, I. (2009). Thought experiments: Determining their meaning. Science & Education, 18, 1–23.CrossRefGoogle Scholar
  31. Galili, I., & Bar, V. (1992). Motion implies force: Where to expect vestiges of the misconception? International Journal of Science Education, 14, 63–81.CrossRefGoogle Scholar
  32. Galili, I., & Sela, D. (2004). Pendulum activities in the Israeli physics curriculum: Used and missed opportunities. Science & Education, 13, 459–472.CrossRefGoogle Scholar
  33. Galili, I., & Tseitlin, M. (2010). Excurse to the history of weight concept: From Aristotle to Newton and then to Einstein (online: http://hipst.eled.auth.gr/hipst_docs/weight.pdf).
  34. Gauld, C. (2004). The treatment of the motion of a simple pendulum in some early 18th century Newtonian textbooks. Science & Education, 13, 321–332.CrossRefGoogle Scholar
  35. Gibson, R. (1755). A course of experimental philosophy; being an introduction to the true philosophy of Sir Isaac Newton. Dublin: printed for R. Gibson and O. Nelson.Google Scholar
  36. Gönen, S. (2008). A study on student teachers’ misconceptions and scientifically acceptable conceptions about mass and gravity. Journal of Science Education and Technology, 17, 70–81.CrossRefGoogle Scholar
  37. Graneau, P., & Graneau, N. (2006). In the grip of the distant universe: The science of inertia. New Jersey: World Scientific.CrossRefGoogle Scholar
  38. Gravesande, J. W. (1747). Mathematical elements of natural philosophy confirm’d by experiments: or, an introduction to Sir Isaac Newton’s philosophy (Vol. 1, 6th ed.) (J. T. Desaguliers, Trans.). London: printed for W. Innys, T. Longman and T. Shewell.Google Scholar
  39. Greiner, W. (2008). Klassische Mechanik I: Kinematik und Dynamik der Punktteilchen Relativität (8th ed.). Frankfurt am Main: Harry Deutsch.Google Scholar
  40. Ha, S., Lee, G., & Kalman, C. (2012). Workshop on friction: Understanding and addressing students’ difficulties in learning science through a hermeneutical perspective. Science & Education.doi: 10.1007/s11191-012-9465-5.
  41. Halliday, D., Resnick, R., & Walker, J. (1993). Fundamentals of physics (4th ed.). New York: Wiley.Google Scholar
  42. Hecht, E. (1994). Physics. Pacific Grove, CA: Brooks/Cole Publishing Company.Google Scholar
  43. Hecht, E. (2006). There is no really good definition of mass. The Physics Teacher, 44, 40–45.CrossRefGoogle Scholar
  44. Helmholtz, H. (1911). Vorlesungen über die Dynamik discreter Massenpunkte. Leipzig: J. A. Barth.Google Scholar
  45. Helsham, R. (1793). A course of lectures in natural philosophy (6th ed.). Dublin: Bryan Robinson.Google Scholar
  46. Henderson, C. H., & Woodhull, J. F. (1901). Elements of physics. New York: A Appleton and Company.Google Scholar
  47. Hestenes, D. (1987). New foundations for classical mechanics. Dordrecht, Boston, Lancaster: D. Reidel Pub. Co.Google Scholar
  48. Hijs, T., & Bosch, G. M. (1995). Cognitive effects of science experiments focusing on students’ preconceptions of force: A comparison of demonstrations and small-group praticals’. International Journal of Science Education, 17, 311–323.CrossRefGoogle Scholar
  49. Hodson, D. (1992). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14(5), 541–566.CrossRefGoogle Scholar
  50. Höttecke, D., Henke, A., & Rieß, F. (2010). Implementing history and philosophy in science teaching: Strategies, methods, results and experiences from the European HIPST project. Science & Education. doi: 10.1007/s11191-010-9330-3.
  51. Jammer, M. (1997 [1961]). Concepts of mass: In classical and modern physics. Mineola, NY: Dover Publications.Google Scholar
  52. Jammer, M. (1999 [1957]). Concepts of force: A study in the foundations of dynamics. Mineola, NY: Dover Publications.Google Scholar
  53. Jammer, M. (2001). Concepts of mass in contemporary physics and philosophy. Princeton: Princeton University Press.Google Scholar
  54. Kalman, C. (2002). Developing critical thinking in undergraduate courses: A philosophical approach. Science & Education, 11, 83–94.CrossRefGoogle Scholar
  55. Kalman, C. (2011a). On the concept of force: A comment on lopes Coelho. Science & Education, 20, 67–69.CrossRefGoogle Scholar
  56. Kalman, C. (2011b). Enhancing students’ conceptual understanding by engaging science text with reflective writing as a hermeneutical circle. Science & Education, 20, 159–172.CrossRefGoogle Scholar
  57. Kater, H., & Lardner, D. (1830). Treatise on mechanics. London: Longman, Rees, Orme, Brown, and Green.Google Scholar
  58. Kleppner, D., & Kolenkow, R. J. (1976). An introduction to mechanics. Boston: McGraw Hill.Google Scholar
  59. Knudsen, J. M., & Hjorth, P. G. (1996). Elements of Newtonian mechanics (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
  60. Kuypers, F. (2010). Klassische Mechanik (9th ed.). Weinheim: Wiley-VCH.Google Scholar
  61. Lodge, O. (1885). Elementary mechanics, including hydrostatic and pneumatics (revised ed.). London and Edinburgh: Chambers.Google Scholar
  62. Lommel, E. (1899). Experimental physics (G. W. Myers, Trans.). London: Kegan Paul, Trench, Trübner & Co.Google Scholar
  63. Mach, E. (1902). The science of mechanics: A critical and historical account of its development (2nd ed.) (T. J. McCormack, Trans.). Chicago: The Open Court Publishing Company.Google Scholar
  64. Malamitsa, K., Kasoutas, M., & Kokkotas, P. (2009). Developing Greek primary school students’ critical thinking through an approach of science teaching which incorporates aspects of history of science. Science & Education, 18, 457–468.CrossRefGoogle Scholar
  65. Maltese, G. (1992). La Storia di F = ma: la seconda legge del moto nel XVIII secolo. Firenze: Leo S. Olschki.Google Scholar
  66. Matthews, M. R. (2009). Teaching the philosophical and worldviews components of science. Science & Education, 18, 697–728.CrossRefGoogle Scholar
  67. Matthews, M. R., Gauld, C. F., & Stinner, A. (2005). The pendulum: Scientific, historical, philosophical and educational perspectives. Dordrecht: Springer.Google Scholar
  68. Newburgh, R. (2004). The pendulum: A paradigm for the linear oscillator. Science & Education, 13, 297–307.CrossRefGoogle Scholar
  69. Newburgh, R., Peidle, J., & Rueckner, W. (2004). When equal masses don’t balance. Physics Education, 39(3), 289–293.CrossRefGoogle Scholar
  70. Newton, I. (1972 [1726]). Isaac Newton’s Philosophiae Naturalis Principia Mathematica (3rd ed.). In A. Koyré & I. B. Cohen (Eds.). Harvard: Harvard University Press.Google Scholar
  71. Nolting, W. (2005). Grundkurs: Theoretische Physik 1: Klassische Mechanik (7th ed.). Braunschweig, Wiesbaden: Vieweg.Google Scholar
  72. Ohanian, H. C. (1994). Principles of physics. New York, London: W. W. Norton and Company.Google Scholar
  73. Planck, M. (1916). Einführung in die Allgemeine Mechanik. Leipzig: S. Hirzel.Google Scholar
  74. Poggendorff, J. C. (1853). Abänderung der Fallmaschine. Monatsberichte der Königlichen Akademie der Wissenschaften zu Berlin (pp. 627–629).Google Scholar
  75. Poggendorff, J. C. (1854). Über eine Abänderung der Fallmaschine. Annalen der Physik und Chemie, 168, 179–182.Google Scholar
  76. Poincaré, H. (1897). Les Idées de Hertz sur la Mécanique. Revue Générale des Sciences, 8, 734–743.Google Scholar
  77. Poincaré, H. (1952 [1905]). Science and hypothesis. New York: Dover.Google Scholar
  78. Roche, J. (2005). What is mass? European Journal of Physics, 26, 225–242.CrossRefGoogle Scholar
  79. Rowlands, S., Graham, T., Berry, J., & McWilliam, P. (2007). Conceptual changes through the lens of Newtonian mechanics. Science & Education, 16, 21–42.CrossRefGoogle Scholar
  80. Rowning, J. (1779). A compendious system of natural philosophy. London: John, Francis, and Ch. Rivington.Google Scholar
  81. Rutherforth, T. (1748). A system of natural philosophy being a course of lectures in mechanics, optics, hydrostatics, and astronomy (Vol. 1). Cambridge: J. Bentham, for W. Thurlbourn.Google Scholar
  82. Serway, R., & Jewett, J. W. (2004). Physics for scientists and engineers (6th ed.). Belmont, CA: Thomson.Google Scholar
  83. Strauch, D. (2009). Classical mechanics: An introduction. Berlin: Springer.CrossRefGoogle Scholar
  84. Tipler, P. (1991). Physics for scientists and engineers (3rd ed.). New York: Worth Publishers.Google Scholar
  85. Turner, S. C. (2012). Changing images of the inclined plane: A case study of a revolution in American science education. Science & Education, 21, 245–270.Google Scholar
  86. Westphall, W. H. (1959). Physik (20th ed.). Berlin, Heidelberg, New York: Springer.Google Scholar
  87. Wood, J. (1796). The principles of mechanics: Designed for the use of students in the university. Cambridge: J. Burges.Google Scholar
  88. Young, H. D., Freedman, R. A., & Sears, F. (2004). Sears and Zemansky’s University Physics (11th ed.). San Francisco: P. Addison-Wesley.Google Scholar
  89. Zemplén, G. (2007). Conflicting agendas: Critical thinking versus science education in the international baccalaureate theory of knowledge course. Science & Education, 16, 167–196.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Faculty of SciencesUniversity of LisbonLisbonPortugal

Personalised recommendations