Science & Education

, Volume 21, Issue 8, pp 1055–1083

Philosophy of Science and Education

Article

Abstract

This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on education changed; you may think of quite different schools of philosophy, from Marxist or positivist to such exotic but at some places influential philosophic positions like that of Rudolph Steiner; of course, you may limit the subject to special fields like epistemology, theory of scientific methodology, or, what has become fashionable recently, sociology of knowledge which may have a considerable bearing on physics teaching (Collins and Shapin 1983; Jung 1985). Again we may think of the topic treated by a philosopher, a scientist, an educationalist, a teacher, which would mean quite a difference. I am trying here to speak as an educationalist, with the physics teacher in mind: this is my vocational perspective as someone who educates physics teachers. Of course, our main concern is the contribution of science, especially physics, to general education, which integrates many of the special topics mentioned. Philosophy of science comes in because it is not at all clear what science and physics is, and what of it should be taught, and how such chosen parts should be taught. I also take this opportunity to give an idea of the longstanding tradition of this discussion in Germany, connected with names like Wagenshein, Litt, Heisenberg and many others.

References

  1. Adair, R. K. (1987). The great design: Particles, fields and creation. New York, Oxford: Oxford University Press.Google Scholar
  2. Aronson, J. L. (1984). A realist philosophy of science. London, Basingstoke: Macmillan.Google Scholar
  3. Batens, D., van Bendegem, J. P. (Eds.). (1988). Theory and experiment: recent insights and new perspectives on their relation. Dordrecht: Reidel.Google Scholar
  4. Bell, J. S. (1988). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.Google Scholar
  5. Bevilacqua, F. (1983). The principle of conservation of energy and the history of classical electromagnetic theory. Pavia: La Goliardica Pavese.Google Scholar
  6. Brown, H. I. (1987a). Observation and objectivity. New York, Oxford: Oxford University Press.Google Scholar
  7. Brown, H. I. (1987b). Naturalising observation. In Nersessian (Ed.), pp. 179–194.Google Scholar
  8. Buchdahl, G. (1983). Styles of scientific thinking. In F. Bevilacqua & P. J. Kennedy (Eds.), pp. 106–112. [Reprinted in Science & Education 1993, vol. 2, no 2, 149–168].Google Scholar
  9. Buchwald, E. (1958). Bildung durch Physik. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
  10. Cohen, R. S., Feyerabend, P. K., & Wartofsky, M. W. (Eds.). (1976). Essays in memory of Imre Lakatos. Boston: Reidel.Google Scholar
  11. Collins, S. H. (Ed.). (1982). Sociology of scientific knowledge. A source book. Bath: Bath University Press.Google Scholar
  12. Collins, H. M., & Shapin, S. (1983). The historical role of the experiment. In: Bevilacqua/Kennedy (Ed.), pp. 282–292.Google Scholar
  13. Cooper, N. G., & West, G. B. (Eds.). (1988). Particle physics: A Los Alamos primer. Cambridge: Cambridge University Press.Google Scholar
  14. Davies, P. C. W., & Brown, J. R. (Eds.). (1988). Superstrings: A theory of everything?. Cambridge: Cambridge University Press.Google Scholar
  15. Elkana, Y. (Ed.). (1974). The interaction between science and philosophy. Atlantic Highlands, HJ: Humanities Press.Google Scholar
  16. Ellul, J. (1974). Von der Revolution zur Revolete. Hamburg: Hoffmann unde Campe.Google Scholar
  17. Franklin, A. (1986). The neglect of experiment. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Gerhardt, V. (1988). Pathos und Distanz—Studien zur Philosophie Friedrich Nietzsches. Stuttgart: Reclam Verlag.Google Scholar
  19. Gibbins, P. (1987). Particles and Paradoxes: The limits of quantum logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Goodman, N. (1986). Ways of worldmaking. Indianapolis: Hackett Publ. Co.Google Scholar
  21. Hacking, I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge: Univ. of Cambridge Press.CrossRefGoogle Scholar
  22. Hanson, N. R. (1970). Hypotheses Fingo. In: Butts-Davis (Eds.).Google Scholar
  23. Hastedt, H. (1988). Das Leib-Seele-problem. Frankfurt Am Main: Suhrkamp.Google Scholar
  24. Heisenberg, W. (1956). Das Naturbild de heutigen Physik. Hamburg: Rowohlt.Google Scholar
  25. Heisenberg, W. (1970). Abschluß der Physik? Süddeutsche Zeitung, Julbiläumsbeilage vom 6.0kt., S.44.Google Scholar
  26. Herbert, N. (1985). Quantum reality, beyond the new physics. New York: Anchor Press/Doubleday. (Deutsch 1987).Google Scholar
  27. Hesse, M. (1970). Is there an independent observation language? In Colodny (Ed.).Google Scholar
  28. Hey, T., & Walters, P. (1987). The quantum universe. Cambridge: Cambridge University Press.Google Scholar
  29. Hund, F. (1930). Die wissenschaftliche Erziehung in den Naturwissenschaften. Mathematik und Physik. In: Nohl-Pallat, Bd. III.Google Scholar
  30. Jung, W. (1983). Anstöße. Ein Essay über die Didaktik der Physik und ihre Probleme. Frankfurt a.M: Diesterweg.Google Scholar
  31. Jung, W. (1985). New history and sociology of science (NHS) und die Ziele des Physikunterrichts. In Physik und Didaktik, vol. 13, pp. 257–262.Google Scholar
  32. Jung, W., & Wiesner, H. (1984). Kontroverse Duetungen der Quantenphysik als Gegenstand des Physikunterrichts. In: Praxis der Naturwissenschaftern P/C 33, pp. 276–281.Google Scholar
  33. Knorr-Cetina, K. D., & Mulkay, M. (Eds.). (1983). Science observed: Perspectives on the social study of science. London: Sage Publications.Google Scholar
  34. Kuhn, T. S. (1982). Metaphor in Science. In: Ortony (Ed.), pp. 409–419.Google Scholar
  35. Lakatos, I. (1972). Falsification and the methodology of scientific research programmes. In: Lakatos & Musgrave (Eds.).Google Scholar
  36. Laudan, L. (1981). Science and hypothesis: Historical essays on scientific methodology. Dordrecht: Reidel.Google Scholar
  37. Litt, T. (1959). Naturwissenschaft und Menschenbildung, 3.erw. Auflage. Heidelberg: Quelle & Meyer.Google Scholar
  38. Müller, A. (1974). Quantum mechanics: A physical world picture. Oxford: Pergamon Press.Google Scholar
  39. Neil, R. E. (1970). The mushroom crowd. In: Karplus (Ed.), pp. 250–260.Google Scholar
  40. Polanyi, M. (1959). The study of man. London: Routledge & Kegan Paul.Google Scholar
  41. Polanyi, M. (1966). The tacit dimension. Garden City, New York: Doubleday & Co.Google Scholar
  42. Quine, W. V. O. (1974). The roots of reference. New York: Doubleday (deutsch: Suhrkamp 1989).Google Scholar
  43. Rescher, N. (1987). Scientific realism. Dordrecht: Reidel Publication.Google Scholar
  44. Rohrlich, F. (1987). From paradox to reality. Cambridge: Cambridge University Press.Google Scholar
  45. Schlick, M. (1920). Raum und Zeit in der gegenwärtigen Physik. Berlin: Springer.Google Scholar
  46. Schmidt, S. J. (Hrsg.). (1987). Der Diskurs des Radikalen Konstruktivismus. Frankfurt: Suhrkamp.Google Scholar
  47. Sellars, W. (1971). Science, sense impressions, and sensa: A reply to cornman. In: Review of Metaphysics, vol. 24, no. 3, pp. 391–447Google Scholar
  48. Shapere, D. (1985). Observation and the scientific enterprise. In: P. Achinstein & O. Hannaway (Eds.), Chap. 2.Google Scholar
  49. Shapere, D. (1987). Method in the philosophy of science and epistemology: How to inquire about inquiry and knowledge. In: Nersessian (Ed.), pp. 1–40.Google Scholar
  50. Siegel, H. (1987). Relativism refuted: A critique of contemporary epistemological relativism. Dordrecht: Reidel.Google Scholar
  51. Sklar, H. (1985). Modestly radical empiricism. In: P. Achinstein & O. Hannaway (Eds.), Chap. 1.Google Scholar
  52. Solymar, L., & Walsh, D. (1984). Lectures on the electrical properties of matter. Oxford/New York/Toronto: Oxford University Press.Google Scholar
  53. Spaemann, R., & LÖW, R. (1981). Die Frage Wozu? Geschichte und Widerentdeckung des teleologischen Denkens. München: Piper.Google Scholar
  54. Sutter, A. (1988). Göttliche Maschinen. Die Automatan für Lebendiges. Frankfurt a.Main: Athenäum Verlag.Google Scholar
  55. Tillich, P. (1956). Systematische Theologie Bd.I. Stuttgart: Evangelisches Verlagswerk.Google Scholar
  56. van Fraassen, B. C. (1980). The scientific image. Oxford: Clarendon Press.CrossRefGoogle Scholar
  57. Wagenschein, M. (1959). Zum Befriff des exemplarischen Lehrens. Weinheim-Berlin: Verlag J. Beltz.Google Scholar
  58. Wagenschein, M. (1960). Zur Didaktik des naturwissenschaftlichen Unterrichts. Zeitschrift für Pädogogik. 2.Beiheft.Google Scholar
  59. Wagenschein, M. (1961). Die pädagogische Dimension der Physik. Braunschweig: Westermann. (3. ergänzte Auflage 1971).Google Scholar
  60. Wagenschein, M. (1966). Ursprüngliches Verstehen und Exaktes Denken. Bd.1. Stuttgart: E.Klett Verlag.Google Scholar
  61. Wagenschein, M. (1966). Zum Problem des genetischen Lehrens. Zeitscghrift für Pädogogik, 12 Heft 4, 305–330.Google Scholar
  62. Wagenschein, M. (1968). Die Sprache im Physikunterricht. Zeitschrift für Pädogogik. 7. Beiheft.Google Scholar
  63. Whitehead, A. N. (1929). The anatomy of some scientific ideas. In The aims of education and other essays, chap. 9. New York: MacMillan (First published 1917) I quote from the Mentor Book edition of 1949.Google Scholar
  64. Whitehead, A. N. (1941). Process and reality. New York: The Social Science Book Store (Reprint of the original 1929).Google Scholar
  65. Whitehead, A. N. (1948a). Adventures of ideas. New York: MacMillan.Google Scholar
  66. Whitehead, A. N. (1948b). Essays in science and philosophy. New York: Philosophical Library.Google Scholar
  67. Wiesner, H. (1989). Beiträge zur Didaktik über Quantenphysik in der Oberstufe. (Dissertation Unversität Frankfurt 1988). Essen: Westarp Verlag.Google Scholar
  68. Wölfflin, H. (1915). Kunstegeschichtliche Grundbegriffe. Das Prolem der Stilentwicklung in der neueren Kunst. F. München: Bruckmann 1943 (1.Aufl. 1915).Google Scholar
  69. Ziman, J. (1968). Public knowledge. The social dimension of science. Cambridge: Cambridge University Press.Google Scholar
  70. Ziman, J. (1978). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institut für Didaktik der PhysikJohann Wolfgang Goethe-UniversitätFrunkfurt am MainGermany

Personalised recommendations