Science & Education

, Volume 21, Issue 10, pp 1567–1594

Mario Bunge’s Philosophy of Mathematics: An Appraisal

Article

Abstract

In this paper, I present and discuss critically the main elements of Mario Bunge’s philosophy of mathematics. In particular, I explore how mathematical knowledge is accounted for in Bunge’s systemic emergent materialism.

To Mario, with gratitude.

References

  1. Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199–222.CrossRefGoogle Scholar
  2. Beeson, M. J. (1985). Foundations of constructive mathematics, volume 6 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in mathematics and related areas (3)]. Metamathematical studies. Berlin: Springer.Google Scholar
  3. Benacerraf, P. (1973). Mathematical truth. The Journal of Philosophy, 70(19), 661–679.CrossRefGoogle Scholar
  4. Beth, E. W., & Piaget, J. (1966). Mathematical epistemology and psychology. Translated from the French by W. Mays. Dordrecht: D. Reidel.Google Scholar
  5. Bishop, E., & Bridges, D. (1985). Constructive analysis, volume 279 of Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences]. Berlin: Springer.Google Scholar
  6. Bunge, M. A. (1961). Analyticity redefined. Mind, 70(278), 239–245.CrossRefGoogle Scholar
  7. Bunge, M. A. (1974). Treatise on basic philosophy: Interpretation and truth (Vol. 2). Dordrecht: D. Reidel.Google Scholar
  8. Bunge, M. A. (1977). Treatise on basic philosophy: The furniture of the world (Vol. 3). Dordrecht: D. Reidel.Google Scholar
  9. Bunge, M. A. (1983). Treatise on basic philosophy: Exploring the world, volume 7, Part I. Dordrecht: D. Reidel.Google Scholar
  10. Bunge, M. A. (1985a). Treatise on basic philosophy: Philosophy of science and technology, volume 7, Part I of treatise on basic philosophy. Dordrecht: D. Reidel.Google Scholar
  11. Bunge, M. A. (1985b). Treatise on basic philosophy: Philosophy of science and technology, volume 7, Part II of epistemology and methodology. Dordrecht: D. Reidel.Google Scholar
  12. Bunge, M. A. (1997). Moderate mathematical fictionism. In E. Agazzi, & G. Darvas (Eds.), Philosophy of mathematics today (pp. 51–71). Dordrecht: Kluwer.CrossRefGoogle Scholar
  13. Bunge, M. A. (2003). Emergence and convergence: Qualitative novelty and the unity of knowledge. Toronto: University of Toronto Press.Google Scholar
  14. Bunge, M. A. (2010). Matter and mind: A philosophical inquiry, volume 287 of Boston studies in the philosophy of science. Berlin: Springer.Google Scholar
  15. Burgess, J. P., Rosen, G. (1997). A subject with no object. Strategies for nominalistic interpretation of mathematics. New York: The Clarendon Press/Oxford University Press.Google Scholar
  16. Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17(5), 401.CrossRefGoogle Scholar
  17. Cantlon, J. F., Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5(12), e328.CrossRefGoogle Scholar
  18. Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., & Pelphrey, K. A. (2009). The neural development of an abstract concept of number. Journal of Cognitive Neuroscience, 21(11), 2217–2229.CrossRefGoogle Scholar
  19. Cellucci, C., & Gillies, D. (Eds.). (2005). Mathematical reasoning and heuristics. London: King’s College Publications.Google Scholar
  20. Chihara, C. (2007). The Burgess-Rosen critique of nominalistic reconstructions. Philosophia Mathematica, 15(1), 54–78.CrossRefGoogle Scholar
  21. Chihara, C. (2008). The existence of mathematical objects. In B. Bold, & R. A. Simons (Eds.), Proof and other dilemmas, MAA spectrum (pp. 131–156). Washington, DC: Mathematical Association of America.Google Scholar
  22. Chihara, C. (2010). New directions for nominalist philosophers of mathematics. Synthese, 176(2), 153–175.CrossRefGoogle Scholar
  23. Chihara, C. S. (2004). A structural account of mathematics. New York: The Clarendon Press/Oxford University Press.Google Scholar
  24. Corfield, D. (2003). Towards a philosophy of real mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Dehaene, S. (2009). The case for a notation-independent representation of number. Behavioral and Brain Sciences, 32(3–4), 333–335.CrossRefGoogle Scholar
  26. Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York: Oxford University Press (rev. and updated edition).Google Scholar
  27. Dehaene, S., Izard, V., Pica, P., & Spelke, E. (2006). Core knowledge of geometry in an amazonian indigene group. Science, 311(5759), 381.CrossRefGoogle Scholar
  28. Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.CrossRefGoogle Scholar
  29. Dehaene, S., & Brannon, E. (2011). Space, time and number in the brain: Searching for the foundations of mathematical thought: An attention and performance series volume (1st ed.). London: Academic Press.Google Scholar
  30. Detlefsen, M. (2005). Formalism. In S. Shapiro, (Ed.), The Oxford handbook of philosophy of mathematics and logic, Chap. 8 (pp. 236–317). Oxford: Oxford University Press.CrossRefGoogle Scholar
  31. Feferman, S. (2004). Tarski’s conception of logic. Annals of Pure and Applied Logic, 126(1–3), 5–13.CrossRefGoogle Scholar
  32. Feferman, S. (2008). Tarski’s conceptual analysis of semantical notions. In New essays on Tarski and philosophy (pp. 72–93). Oxford: Oxford University Press.Google Scholar
  33. Feferman, S. (2010). Set-theoretical invariance criteria for logicality. Notre Dame Journal of Formal Logic, 51(1), 3–20.CrossRefGoogle Scholar
  34. Ferreirós, J. (2009). Hilbert, logicism, and mathematical existence. Synthese, 170(1), 33–70.CrossRefGoogle Scholar
  35. Ferreirós, J., & Gray, J. J. (Eds). (2006). The architecture of modern mathematics: Essays in history and philosophy. Oxford: Oxford University Press.Google Scholar
  36. Hauser, M., Chomsky, N., & W. Tecumseh Fitch. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 1569–1579.CrossRefGoogle Scholar
  37. Izard, V., Pica, E., Spelke, S., & Dehaene, S. (2011). Flexible intuitions of euclidean geometry in an amazonian indigene group. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9782–9787.CrossRefGoogle Scholar
  38. Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382.CrossRefGoogle Scholar
  39. James, I. (2003). Singular scientists. Journal of the Royal Society of Medicine, 96(1), 36.CrossRefGoogle Scholar
  40. Jordan, K., & Brannon, E. (2006). The multisensory representation of number in infancy. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3486–3489.Google Scholar
  41. Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an amazonian indigene group. Science, 306(5695), 499–503.Google Scholar
  42. Leng, M. (2005). Revolutionary fictionalism: A call to arms. Philosophia Mathematica, 13(3), 277–293.CrossRefGoogle Scholar
  43. Leng, M. (2007). What’s there to know? A fictionalist account of mathematical knowledge. In Mathematical knowledge (pp. 84–108). Oxford: Oxford University Press.Google Scholar
  44. Leng, M. (2010). Mathematics and reality. Oxford: Oxford University Press.CrossRefGoogle Scholar
  45. Maddy, P. (1997). Naturalism in mathematics. New York: The Clarendon Press/Oxford University Press.Google Scholar
  46. Mancosu, P. (2008). The philosophy of mathematical practice. Oxford: Oxford University Press.CrossRefGoogle Scholar
  47. Martin-Löf, Per (1998). An intuitionistic theory of types. In G. Sambin, & J. M. Smith (Eds.), Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford logic guides (pp. 127–172). New York: Oxford University Press.Google Scholar
  48. Marquis, J.-P. (1997). Abstract mathematical tools and machines for mathematics. Philosophia Mathematica, 5(3), 250–272.Google Scholar
  49. Marquis, J.-P. (2006). A path to the epistemology of mathematics: Homotopy theory. In J. J. Gray, & J. Ferreiros (Eds.), (pp. 239–260). Oxford: Oxford University Press.Google Scholar
  50. Marquis, J.-P. (2009). From a geometrical point of view. New York: Springer.Google Scholar
  51. Mautner, F. I. (1946). An extension of Klein’s Erlanger program: Logic as invariant-theory. American Journal of Mathematics, 68, 345–384.CrossRefGoogle Scholar
  52. McGee, V. (1996). Logical operations. Journal of Philosophical Logic, 25(6), 567–580.CrossRefGoogle Scholar
  53. Piazza, M., & Dehaene, S. (2004). From number neurons to mental arithmetic: The cognitive neuroscience of number sense. In M. S. Gazzaniga (Eds.), The cognitive neurosciences (3rd ed., pp. 865–877).Google Scholar
  54. Quine, W. V. O. (1951). Main trends in philosophy: Two dogmas of empiricism. The Philosophical Review, 60(1), 20–43.Google Scholar
  55. Serfati, M. (2005). La révolution symbolique. Transphilosophiques. Paris: Éditions PÉTRA.Google Scholar
  56. Sher, G. (1991). The bounds of logic: A generalized viewpoint. A Bradford book. Cambridge, MA: MIT Press.Google Scholar
  57. Sher, G. (2003). A characterization of logical constants is possible. Theoria (San Sebastián), 18(47), 189–198.Google Scholar
  58. Stocklin, P., Brannon, E., & Terrace, H. (1999). Monkey numeration. Science New Series, 283(5409), 1851–1852.Google Scholar
  59. Tarski, A. (1986). What are logical notions? History and Philosophy of Logic, 7(2), 143–154.CrossRefGoogle Scholar
  60. Thomas, R. S. D. (2000). Mathematics and fiction. I: Identification. Logique et Analyse (N.S.), 43(171–172), 301–340.Google Scholar
  61. Thomas, R. S. D. (2002). Mathematics and fiction. II: Analogy Logique et Analyse (N.S.), 45(177–178), 185–228.Google Scholar
  62. Timmermans, B. (1995). La résolution des problèmes de Descartes à Kant. Paris: PUF.Google Scholar
  63. Torretti, R. (1982). Three kinds of mathematical fictionalism. In J. Agassi, R. S. Cohen, & M. A. Bunge (Eds.), Scientific philosophy today: Essays in honor of Mario Bunge (Vol. 67, pp. 399–414). Dordrecht, Holland: D. ReidelGoogle Scholar
  64. Troelstra, A. S., & van Dalen, D. (1988a). Constructivism in mathematics: An introduction. Vol. I, volume 121 of Studies in logic and the foundations of mathematics. Amsterdam: North-Holland Publishing Co.Google Scholar
  65. Troelstra, A. S., & van Dalen, D. (1988b). Constructivism in mathematics: An introduction. Vol. II, volume 123 of Studies in logic and the foundations of mathematics. Amsterdam: North-Holland Publishing Co.Google Scholar
  66. Vaihinger, H., & Ogden, C. K. (1925). The philosophy of ‘as if’: A system of the theoretical, practical and religious fictions of mankind. New York: Harcourt, Brace and Company.Google Scholar
  67. Walton, K. L. (1990). Mimesis as make-believe: On the foundations of the representational arts. Cambridge, MA: Harvard University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Département de PhilosophieUniversité de MontréalMontréalCanada

Personalised recommendations