Science & Education

, Volume 22, Issue 2, pp 279–292

Regulatory Evolution and Theoretical Arguments in Evolutionary Biology



The cis-regulatory hypothesis is one of the most important claims of evolutionary developmental biology. In this paper I examine the theoretical argument for cis-regulatory evolution and its role within evolutionary theorizing. I show that, although the argument has some weaknesses, it acts as a useful example for the importance of current scientific debates for science education.


  1. Abd-El-Khalick, F., & Lederman, N. (2000). Improving science teachers’ conceptions of the nature of science: A critical review of the literature. International Journal of Science Education, 22, 665–701.CrossRefGoogle Scholar
  2. Amundson, R. (2005). The changing role of the embryo in evolutionary thought. New York: Cambridge University Press.CrossRefGoogle Scholar
  3. Beatty, J. (1984). Chance and natural selection. Philosophy of Science, 51, 183–211.CrossRefGoogle Scholar
  4. Beatty, J. (1997). Why do biologists argue like they do? Philosophy of Science, 64(Proceedings), S432–S443.CrossRefGoogle Scholar
  5. Braga, M., Guerra, A., & Reis, J. C. (2010). The role of historical-philosophical controversies in teaching sciences: The debate between biot and ampere. Science & Education. doi:10.1007/s11191-010-9312-5.
  6. Brigandt, I. (2011). Explanation in biology: Reduction, pluralism, and explanatory aims. Science & Education. doi:10.1007/s11191-011-9350-7 .
  7. Britten, R. J., & Davidson, E. H. (1971). Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quarterly Review of Biology, 46, 111–138.CrossRefGoogle Scholar
  8. Carroll, S. B. (2005a). Evolution at two levels: On genes and form. PLoS Biology, 3, 1159–1166.Google Scholar
  9. Carroll, S. B. (2005b). Endless forms most beautiful: The new science of Evo-devo. New York: W. W. Norton.Google Scholar
  10. Carroll, S. B. (2006). The making of the fittest: DNA and the ultimate forensic record of evolution. New York: W. W. Norton.Google Scholar
  11. Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134, 25–36.CrossRefGoogle Scholar
  12. Carroll, S. B., Grenier, J. K., & Weatherbee, S. D. (2001). From DNA to diversity: Molecular genetics and the evolution of animal design. Malden, MA: Blackwell.Google Scholar
  13. Carroll, S. B., Prud’homme, B., & Gompel, N. (2008). Regulating evolution. Scientific American, 298, 60–67.CrossRefGoogle Scholar
  14. Chiu, C., Amemiya, C., Dewar, K., Kim, C., Ruddle, F. H., & Wagner, G. P. (2001). Molecular evolution of the HoxA cluster in the three major gnathostome lineages. Proceedings of the National Academy of Sciences USA, 99, 5492–5497.CrossRefGoogle Scholar
  15. Craig, L. R. (2009). Defending Evo-devo: A response to Hoekstra and Coyne. Philosophy of Science, 76, 335–344.CrossRefGoogle Scholar
  16. Darwin, C. (1872). On the origin of species by means of natural selection (6th ed.). London: John Murray.Google Scholar
  17. Davidson, E. H. (2001). Genomic regulatory systems. San Diego: Academic Press.Google Scholar
  18. Fares, M. A., Bezemer, D., Moya, A., & Marín, I. (2003). Selection on coding regions determined Hox7 genes evolution. Molecular Biology and Evolution, 20, 2104–2112.CrossRefGoogle Scholar
  19. Gerhart, J. C., & Kirschner, M. W. (2007). The theory of facilitated variation. Proceedings of the National Academy of Sciences USA, 104, 8582–8589.CrossRefGoogle Scholar
  20. Glazko, G., Veeramachaneni, V., Nei, M., & Makałowski, W. (2005). Eighty percent of proteins are different between humans and chimpanzees. Gene, 346, 215–219.CrossRefGoogle Scholar
  21. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
  22. Gould, S. J. (1983). The hardening of the synthesis. In M. Grene (Ed.), Dimensions of Darwinism (pp. 71–93). Cambridge: Cambridge University Press.Google Scholar
  23. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm. Proceedings of the Royal Society of London, B205, 581–598.CrossRefGoogle Scholar
  24. Hoekstra, H. E., & Coyne, J. R. (2007). The Locus of evolution: Evo-devo and the genetics of adaptation. Evolution, 61, 995–1016.CrossRefGoogle Scholar
  25. Kafri, R., Springer, M., & Pilpel, Y. (2009). Genetic redundancy: New tricks for old genes. Cell, 136, 389–392.CrossRefGoogle Scholar
  26. Kampourakis, K., & McComas, W. F. (2010). Charles Darwin and evolution: Illustrating human aspects of science. Science & Education, 19, 637–654.CrossRefGoogle Scholar
  27. King, M. C., & Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science, 188, 107–116.CrossRefGoogle Scholar
  28. Kipnis, N. (2001). Scientific controversies in teaching science: The case of volta. Science & Education, 10, 33–49.CrossRefGoogle Scholar
  29. Kirschner, M. W., & Gerhart, J. C. (2005). The plausibility of life: Resolving Darwin’s dilemma. New Haven: Yale University Press.Google Scholar
  30. Laubichler, M. D., & Maienschein, J. (2007). From embryology to Evo-devo: A history of developmental evolution. Cambridge, MA: MIT Press.Google Scholar
  31. Lewontin, R. C. (2000). What population geneticists know and how they know it. In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 191–214). Cambridge: Cambridge University Press.Google Scholar
  32. Liao, B., Wenga, M., & Zhang, J. (2010). Contrasting genetic paths to morphological and physiological evolution. Proceedings of the National Academy of Sciences USA, 107, 7353–7358.CrossRefGoogle Scholar
  33. Love, A. C. (2003). Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biology and Philosophy, 18, 309–345.CrossRefGoogle Scholar
  34. Love, A. C. (2006). Evolutionary morphology and Evo-devo: Hierarchy and novelty. Theory in Biosciences, 124, 317–333.CrossRefGoogle Scholar
  35. Love, A. C. (2008). Explaining evolutionary innovations and novelties: Criteria of explanatory adequacy and epistemological prerequisites. Philosophy of Science, 75, 874–886.CrossRefGoogle Scholar
  36. Millstein, R. (2002). Are random drift and natural selection conceptually distinct? Biology and Philosophy, 17, 33–53.CrossRefGoogle Scholar
  37. Monteiro, A., & Podlaha, O. (2009). Wings, horns, and butterfly eyespots: How do complex traits evolve? PLoS Biology, 7, 209–216.CrossRefGoogle Scholar
  38. Müller, G. B. (2007). Evo-devo: Extending the evolutionary synthesis. Nature Reviews, 8, 943–949.Google Scholar
  39. Müller, G. B., & Newman, S. A. (2005). The innovation triad: An Evo-devo agenda. Journal of Experimental Zoology (Molecular and Developmental Evolution), 304B, 487–503.CrossRefGoogle Scholar
  40. Newman, S. A., & Müller, G. B. (2000). Epigenetic mechanisms of character origination. Journal of Experimental Zoology (Molecular and Developmental Evolution), 288, 304–317.CrossRefGoogle Scholar
  41. Odenbaugh, J. (2005). Idealized, Inaccurate, but successful: A pragmatic approach to evaluating models in theoretical ecology. Biology and Philosophy, 20, 231–255.CrossRefGoogle Scholar
  42. Paraskevopoulou, E., & Koliopoulos, D. (2010). Teaching the nature of science through the millikan-ehrenhaft dispute. Science & Education. doi:10.1007/s11191-010-9308-1.
  43. Pennisi, E. (2008). Deciphering the genetics of evolution. Science, 321, 760–763.CrossRefGoogle Scholar
  44. Sansom, R., & Brandon, R. N. (Eds.). (2000). Integrating evolution and development: From theory to practice. Cambridge, MA: MIT Press.Google Scholar
  45. Scott, E. C., & Branch, G. (2003). Evolution: What’s wrong with ‘teaching the controversy’. Trends in Ecology & Evolution, 18, 499–502.CrossRefGoogle Scholar
  46. Silverman, M. P. (1992). Raising questions: Philosophical significance of controversy in science. Science & Education, 1, 163–179.CrossRefGoogle Scholar
  47. Stern, D. L. (2000). Perspective: Evolutionary developmental biology and the problem of variation. Evolution, 54, 1079–1091.Google Scholar
  48. Stern, D. L., & Orgogozo, V. (2008). The Loci of evolution: How predictable is genetic evolution? Evolution, 62, 2155–2177.CrossRefGoogle Scholar
  49. Wagner, G. P., & Lynch, V. J. (2008). The gene regulatory logic of transcription factor evolution. Trends in Ecology & Evolution, 23, 377–385.CrossRefGoogle Scholar
  50. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Cambridge, MA: Harvard University Press.Google Scholar
  51. Wray, G. A. (2006). Spot on (and off). Nature, 440, 1001–1002.CrossRefGoogle Scholar
  52. Wray, G. A. (2007). The evolutionary significance of cis-regulatory mutations. Nature Reviews Genetics, 8, 206–216.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of BristolBristolUK

Personalised recommendations