Advertisement

Science & Education

, Volume 22, Issue 2, pp 189–220 | Cite as

Classifying Life, Reconstructing History and Teaching Diversity: Philosophical Issues in the Teaching of Biological Systematics and Biodiversity

  • Thomas A. C. ReydonEmail author
Article

Abstract

Classification is a central endeavor in every scientific field of work. Classification in biology, however, is distinct from classification in other fields of science in a number of ways. Thus, understanding how biological classification works is an important element in understanding the nature of biological science. In the present paper, I discuss a number of philosophical issues that are characteristic for classification in biological science, paying special attention to questions related to science education. My aims are (1) to provide science educators and others concerned with the teaching of biology with an accessible overview of the philosophy of biological classification and (2) to show how knowledge of the philosophy of classification can play an important role in science teaching.

Keywords

Biological Science Natural Kind Species Concept High Taxon Recent Common Ancestor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am indebted to Kostas Kampourakis and John Wilkins for helpful comments on drafts of this paper, and to Sabina Leonelli for bringing the view of Claude Bernard to my attention by means of a recent paper of hers (Leonelli 2010).

References

  1. Agapow, P.-M., Bininda-Edmonds, O. R. P., Crandall, K. A., Gittleman, J. L., Mace, G. M., Marshall, J. C., et al. (2004). The impact of species concept on biodiversity studies. Quarterly Review of Biology, 79, 161–179.CrossRefGoogle Scholar
  2. Agassiz, L. ([1859] 2004). Essay on classification (Edited by E. Lurie). Mineola (NY): Dover Publications.Google Scholar
  3. Armstrong, D. M. (1983). What is a law of nature?. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Baum, D. A., DeWitt-Smith, S., & Donovan, S. S. S. (2005). The tree-thinking challenge. Science, 310, 979–980.CrossRefGoogle Scholar
  5. Baum, D. A., & Offner, S. (2008). Phylogenies & tree-thinking. The American Biology Teacher, 70, 222–229.CrossRefGoogle Scholar
  6. Beatty, J. (1995). The evolutionary contingency thesis. In G. Wolters & J. G. Lennox (Eds.), Concepts, theories, and rationality in the biological sciences: The second Pittsburgh-Konstanz colloquium in the philosophy of science (pp. 45–81). Konstanz/Pittsburgh: Universitätsverlag Konstanz/University of Pittsburgh Press.Google Scholar
  7. Bernard, C. (1957 [1927]). An introduction to the study of experimental medicine. Mineola (NY): Dover Publications.Google Scholar
  8. Bird, A., & Tobin, E. (2008). Natural kinds. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy (Fall 2008 ed.). Online at http://plato.stanford.edu/archives/fall2008/entries/natural-kinds/.
  9. Bock, W. J. (1974). Philosophical foundations of classical evolutionary classification. Systematic Zoology, 22, 375–392.CrossRefGoogle Scholar
  10. Bodenreider, O., & Stevens, R. (2006). Bio-ontologies: Current trends and future directions. Briefings in Bioinformatics, 7, 256–274.CrossRefGoogle Scholar
  11. Bodner, G. M., & Pardue, H. L. (1995). Chemistry: An experimental science (2nd ed.). New York: Wiley.Google Scholar
  12. Boyd, R. N. (2010). Scientific realism. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Summer 2010 ed.). online at http://plato.stanford.edu/archives/sum2010/entries/scientific-realism/.
  13. Boyd, R. N., Gasper, P., & Trout, J. D. (1991). The philosophy of science. Cambridge, MA: MIT Press.Google Scholar
  14. Brower, A. V. Z. (2000). Evolution is not a necessary assumption of cladistics. Cladistics, 16, 143–154.CrossRefGoogle Scholar
  15. Churchland, P. M. (1985). Conceptual progress and word/world relations: In search of the essence of natural kinds. Canadian Journal of Philosophy, 15, 1–17.Google Scholar
  16. Claridge, M. F. (2010). Species are real biological entities. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 110–122). Chichester: Wiley.Google Scholar
  17. Cracraft, J. (2000). Species concepts in theoretical and applied biology: A systematic debate with consequences. In Q. D. Wheeler & R. Meier (Eds.), Species concepts and phylogenetic theory (pp. 3–14). New York: Columbia University Press.Google Scholar
  18. Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72, 741–765.CrossRefGoogle Scholar
  19. Currie, G. (1996). Natural kinds. In T. Mautner (Ed.), A dictionary of philosophy (pp. 282–283). Oxford: Blackwell.Google Scholar
  20. Daly, C. (1998). Natural kinds. In E. Craig (Ed.), Routledge encyclopedia of philosophy (Vol. 6, pp. 682–685). London & New York: Routledge.Google Scholar
  21. Darwin, C. R. (1859). On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. London: John Murray.Google Scholar
  22. De Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 57–75). Oxford: Oxford University Press.Google Scholar
  23. De Queiroz, K. (1999). The general lineage concept of species and the defining properties of the species category. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 49–89). Cambridge (MA): MIT Press.Google Scholar
  24. Devitt, M. (2008). Realism and anti-realism. In S. Psillos & M. Curd (Eds.), The Routledge companion to the philosophy of science (pp. 224–235). London & New York: Routledge.Google Scholar
  25. DeWitt, R. (2010). Philosophy of science. In F. Allhoff (Ed.), Philosophies of the sciences: A guide (pp. 9–37). Chichester: Wiley.Google Scholar
  26. Dobzhansky, T. (1964). Biology, molecular and organismic. American Zoologist, 4, 443–452.Google Scholar
  27. Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35, 125–129.Google Scholar
  28. Dupré, J. A. (1993). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, MA: Harvard University Press.Google Scholar
  29. Dupré, J. A. (1999). On the impossibility of a monistic account of species. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 3–22). Cambridge (MA): MIT Press.Google Scholar
  30. Dupré, J. A. (2000). Natural kinds. In W. H. Newton-Smith (Ed.), A companion to the philosophy of science (pp. 311–319). Oxford: Blackwell.Google Scholar
  31. Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science & Education, 85, 554–567.CrossRefGoogle Scholar
  32. Ereshefsky, M. (2001). The poverty of the Linnaean hierarchy: A philosophical study of biological taxonomy. Cambridge: Cambridge University Press.Google Scholar
  33. Ereshefsky, M. (2007). Species, taxonomy, and systematics. In M. Matthen & M. Stephens (Eds.), Handbook of the philosophy of science—Philosophy of biology (pp. 403–427). North-Holland: Amsterdam.CrossRefGoogle Scholar
  34. Ereshefsky, M. (2008). Systematics and taxonomy. In S. Sarkar & A. Plutynski (Eds.), A companion to the philosophy of biology (pp. 99–118). Malden, MA: Blackwell.Google Scholar
  35. Ereshefsky, M. (2010a). Species. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Spring 2010 ed.). Online at http://plato.stanford.edu/archives/spr2010/entries/species/.
  36. Ereshefsky, M. (2010b). Darwin’s solution to the species problem. Synthese, 175, 405–425.CrossRefGoogle Scholar
  37. Farber, P. L. (2000). Finding order in nature: The Naturalist tradition from Linnaeus to E.O. Wilson, Baltimore & London: Johns Hopkins University Press.Google Scholar
  38. Galton, F. (1874). English men of science: Their nature and nurture. London: Macmillan & Co.CrossRefGoogle Scholar
  39. Gelman, S. A. (2003). The essential child: Origins of essentialism in everyday thought. Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. Gelman, S. A., & Hirschfeld, L. A. (1999). How biological is essentialism? In D. L. Medin & S. Atran (Eds.), Folkbiology (pp. 403–446). Cambridge, MA: MIT Press.Google Scholar
  41. Ghiselin, M. T. (1966). On psychologism in the logic of taxonomic controversies. Systematic Zoology, 15, 207–215.CrossRefGoogle Scholar
  42. Ghiselin, M. T. (1974). A radical solution to the species problem. Systematic Zoology, 23, 536–544.CrossRefGoogle Scholar
  43. Gregory, T. R. (2008). Understanding evolutionary trees. Evolution: Education and Outreach, 1, 121–137.CrossRefGoogle Scholar
  44. Grene, M., & Depew, D. (2004). The philosophy of biology: An episodic history. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  45. Griffiths, P. E. (2006). Function, homology, and character individuation. Philosophy of Science, 73, 1–15.CrossRefGoogle Scholar
  46. Haber, M. H., Hamilton, A., Okasha, S., & Odenbaugh, J. (2010). Philosophy of biology. In F. Allhoff (Ed.), Philosophies of the sciences: A guide (pp. 184–212). Chichester: Wiley.CrossRefGoogle Scholar
  47. Hacking, I. (1991). A tradition of natural kinds. Philosophical Studies, 61, 109–126.CrossRefGoogle Scholar
  48. Hendry, R. F. (2006). Elements, compounds, and other chemical kinds. Philosophy of Science, 73, 864–875.CrossRefGoogle Scholar
  49. Hennig, W. (1950). Grundzüge einer theorie der phylogenetischen Systematik. Berlin: Deutscher Zentralverlag.Google Scholar
  50. Hennig, W. (1965). Phylogenetic systematics. Annual Review of Entomology, 10, 97–116.CrossRefGoogle Scholar
  51. Hennig, W. (1966). Phylogenetic systematics. Urbana, IL: University of Illinois Press.Google Scholar
  52. Hey, J. (2001). Genes, categories, and species: The evolutionary and cognitive causes of the species problem. Oxford: Oxford University Press.Google Scholar
  53. Hull, D. L. (1976). Are species really individuals? Systematic Zoology, 25, 174–191.CrossRefGoogle Scholar
  54. Hull, D. L. (1977). The ontological status of species as evolutionary units. In R. Butts & J. Hintikka (Eds.), Foundational problems in the special sciences (pp. 91–102). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  55. Hull, D. L. (1978). A matter of individuality. Philosophy of Science, 45, 335–360.CrossRefGoogle Scholar
  56. Hull, D. L. (1988). Science as a process: An evolutionary account of the social and conceptual development of science. Chicago & London: University of Chicago Press.Google Scholar
  57. Jensen, L. J., & Bork, P. (2010). Ontologies in quantitative biology: A basis for comparison, integration, and discovery. PLoS Biology, 8, e1000374.CrossRefGoogle Scholar
  58. Kampourakis, K., & McComas, W. F. (2010). Charles Darwin and evolution: Illustrating human aspects of science. Science & Education, 19, 637–654.CrossRefGoogle Scholar
  59. Kattmann, U. (1995). Konzeption eines naturgeschichtlichen Biologieunterrichts: Wie Evolution Sinn macht. Zeitschrift für Didaktik der Naturwissenschaften, 1, 29–42.Google Scholar
  60. Kearney, M. (2007). Philosophy and phylogenetics: Historical and current connections. In D. L. Hull & M. Ruse (Eds.), The Cambridge companion to the philosophy of biology (pp. 211–232). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  61. Kitcher, P. S. (1984). Species. Philosophy of Science, 51, 308–333.CrossRefGoogle Scholar
  62. Kornblith, H. (1999). Natural kinds. In R. A. Wilson & F. C. Keil (Eds.), The MIT encyclopedia of the cognitive sciences (pp. 588–589). Cambridge, MA: MIT Press.Google Scholar
  63. Koslicki, K. (2008). Natural kinds and natural kind terms. Philosophy Compass, 3, 789–802.CrossRefGoogle Scholar
  64. Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  65. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire (VNOS): Toward valid and meaningful assessment of learners’ conceptions of Nature of Science. Journal of Research in Science Teaching, 39, 497–521.CrossRefGoogle Scholar
  66. Leonelli, S. (2010). Documenting the emergence of bio-ontologies: Or, why researching bioinformatics requires HPSSB. History and Philosophy of the Life Sciences, 32, 105–125.Google Scholar
  67. Lherminer, P., & Solignac, M. (2000). L’espèce: Définitions d’auteurs, Comptes Rendus de l’Académie des Sciences de Paris. Sciences de la Vie, 323, 153–165.Google Scholar
  68. Lovejoy, A. O. (1936). The great chain of being: A study of the history of an idea. Cambridge, MA: Harvard University Press.Google Scholar
  69. Maclaurin, J., & Sterelny, K. (2008). What is biodiversity?. Chicago & London: University of Chicago Press.Google Scholar
  70. Mayden, R. L. (1992). Preface. In R. L. Mayden (Ed.), Systematics, historical ecology, and North American freshwater fishes (pp. xvii–xxi). Stanford, CA: Stanford University Press.Google Scholar
  71. Mayden, R. L. (1997). A hierarchy of species concepts: The denouement in the saga of the species problem. In M. F. Claridge, H. A. Dawah, & M. R. Wilson (Eds.), Species: The units of biodiversity (pp. 381–424). London: Chapman and Hall.Google Scholar
  72. Mayr, E. (1942). Systematics and the origin of species from the viewpoint of a zoologist. Cambridge, MA: Harvard University Press.Google Scholar
  73. Mayr, E. (Ed.). (1957). The species problem. Washington, DC: American Association for the Advancement of Science.Google Scholar
  74. Mayr, E. (1961). Cause and effect in biology. Science, 134, 1501–1506.CrossRefGoogle Scholar
  75. Mayr, E. (1968). Theory of biological classification. Nature, 220, 545–548.CrossRefGoogle Scholar
  76. Mayr, E. (1981). Biological classification: Toward a synthesis of opposing methodologies. Science, 214, 510–516.CrossRefGoogle Scholar
  77. Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Cambridge, MA: Harvard University Press.Google Scholar
  78. Mayr, E. (1985). Darwin’s five theories of evolution. In D. Kohn (Ed.), The Darwinian heritage (pp. 755–772). Princeton, NJ: Princeton University Press.Google Scholar
  79. Mayr, E. (1996). What is a species, and what is not? Philosophy of Science, 63, 262–277.CrossRefGoogle Scholar
  80. Mayr, E. (1997). This is biology: The science of the living world. Cambridge, MA: Harvard University Press.Google Scholar
  81. Mayr, E. (2004). What makes biology unique? Considerations on the autonomy of a scientific discipline. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  82. Mayr, E., & Bock, W. J. (2002). Classifications and other ordering systems. Journal of Zoological Systematics and Evolution Research, 40, 169–194.CrossRefGoogle Scholar
  83. McComas, W. F. (2008). Proposals for core nature of science content in popular books on the history and philosophy of science: Lessons for science education. In Y. J. Lee & A. L. Tan (Eds.), Science education at the nexus of theory and practice (pp. 259–270). Rotterdam: Sense.Google Scholar
  84. McOuat, G. (2001). From cutting nature at its joints to measuring it: New kinds and new kinds of people in biology. Studies in History and Philosophy of Science, 32, 613–645.CrossRefGoogle Scholar
  85. McOuat, G. (2009). The origins of natural kinds: Keeping “essentialism” at bay in the age of reform. Intellectual History Review, 19, 211–230.CrossRefGoogle Scholar
  86. Meir, E., Perry, J., Herron, J. C., & Kingsolver, J. (2007). College students’ misconceptions about evolutionary trees. The American Biology Teacher, 69, 71–76.CrossRefGoogle Scholar
  87. Mikkelson, G. M. (2003). Ecological kinds and ecological laws. Philosophy of Science, 70, 1390–1400.CrossRefGoogle Scholar
  88. Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.CrossRefGoogle Scholar
  89. Mishler, B. D. (1999). Getting rid of species? In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 307–315). Cambridge, MA: MIT Press.Google Scholar
  90. Mishler, B. D. (2010). Species are not uniquely real biological entities. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 91–109). Chichester: Wiley.Google Scholar
  91. Neander, K. (1991). Function as selected effects: The conceptual analyst’s defense. Philosophy of Science, 58, 168–184.CrossRefGoogle Scholar
  92. Nee, S. (2005). The great chain of being. Nature, 435, 429.CrossRefGoogle Scholar
  93. Nelson, G., & Platnick, N. (1981). Systematics and biogeography: Cladistics and vicariance. New York: Columbia University Press.Google Scholar
  94. Nickels, M. K., & Nelson, C. F. (2005). Beware of nuts & bolts: Putting evolution into the teaching of biological classification. The American Biology Teacher, 67, 283–289.CrossRefGoogle Scholar
  95. Novick, L. R., & Catley, K. M. (2006). Interpreting hierarchical structure: evidence from cladograms in biology. In D. Barker-Plummer, R. Cox, & N. Swoboda (Eds.), Diagrams 2006 (pp. 176–180). Berlin & Heidelberg: Springer.Google Scholar
  96. O’Hara, R. J. (1991). Homage to Clio, or, toward an historical philosophy for evolutionary biology. Systematic Zoology, 37, 142–155.CrossRefGoogle Scholar
  97. O’Hara, R. J. (1997). Population thinking and tree thinking in systematics. Zoologica Scripta, 26, 323–329.CrossRefGoogle Scholar
  98. Oberheim, E., & Hoyningen-Huene, P. (2010). The incommensurability of scientific theories. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2010 ed.). Online at http://plato.stanford.edu/archives/fall2010/entries/incommensurability/.
  99. Okasha, S. (2002). Philosophy of science: A very short introduction. Oxford: Oxford University Press.Google Scholar
  100. Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40, 692–720.CrossRefGoogle Scholar
  101. Panchen, A. L. (1992). Classification, evolution, and the nature of biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  102. Reydon, T. A. C. (2004). Why does the species problem still persist? BioEssays, 26, 300–305.CrossRefGoogle Scholar
  103. Reydon, T. A. C. (2005). On the nature of the species problem and the four meanings of ‘species’. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 135–158.CrossRefGoogle Scholar
  104. Reydon, T. A. C. (2006). Generalizations and kinds in natural science: The case of species. Studies in History and Philosophy of Biological and Biomedical Sciences, 37, 230–255.CrossRefGoogle Scholar
  105. Reydon, T. A. C. (2009). Gene names as proper names of individuals: An assessment. British Journal for the Philosophy of Science, 60, 409–432.CrossRefGoogle Scholar
  106. Rhee, S. Y., Dickerson, J., & Xu, D. (2006). Bioinformatics and its applications in plant biology. Annual Review of Plant Biology, 57, 335–360.CrossRefGoogle Scholar
  107. Richards, R. A. (2010). The species problem: A philosophical analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  108. Rojas, M. (1992). The species problem and conservation: What are we protecting? Conservation Biology, 6, 170–178.CrossRefGoogle Scholar
  109. Rosenberg, A. (1994). Instrumental biology or the disunity of science. Chicago & London: University of Chicago Press.Google Scholar
  110. Scerri, E. (2005). Some aspects of the metaphysics of chemistry and the nature of the elements. Hyle, 11, 127–145.Google Scholar
  111. Schummer, J. (2010). Philosophy of chemistry. In F. Allhoff (Ed.), Philosophies of the sciences: A guide (pp. 163–183). Chichester: Wiley.CrossRefGoogle Scholar
  112. Schwartz, R., & Lederman, N. G. (2008). What scientists say: Scientists’ views of nature of science and relation to science context. International Journal of Science Education, 30, 727–771.CrossRefGoogle Scholar
  113. Shulman, L. S. (2006). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–21.Google Scholar
  114. Snyder, L. J. (2009). William Whewell. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2009 ed.). Online at http://plato.stanford.edu/archives/win2009/entries/whewell/.
  115. Stamos, D. (2003). The species problem: Biological species, ontology, and the metaphysics of biology. Lanham, MD: Lexington Books.Google Scholar
  116. Stevens, P. F. (1994). The development of biological systematics: Antoine-Laurent de Jussieu, nature, and the natural system. New York: Columbia University Press.Google Scholar
  117. Van Dijk, E. M. (forthcoming). Portraying real science in science communication. Science Education.Google Scholar
  118. Van Dijk, E. M., & Kattmann, U. (2009). Teaching evolution with historical narratives. Evolution: Education and Outreach, 2, 479–489.CrossRefGoogle Scholar
  119. Van Dijk, E. M., & Reydon, T. A. C. (2010). A conceptual analysis of evolutionary theory for teacher education. Science & Education, 19, 655–677.CrossRefGoogle Scholar
  120. Vihalemm, R. (2003). Natural kinds, explanation, and essentialism in chemistry. Annals of the New York Academy of Sciences, 988, 1–12.CrossRefGoogle Scholar
  121. Walsh, D. (2006). Evolutionary essentialism. British Journal for the Philosophy of Science, 57, 425–448.CrossRefGoogle Scholar
  122. Waters, C. K. (1998). Causal regularities in the biological world of contingent distributions. Biology and Philosophy, 13, 5–36.CrossRefGoogle Scholar
  123. Waters, C. K. (2003). The arguments in the Origin of Species. In J. Hodge & G. Radick (Eds.), The Cambridge companion to Darwin (pp. 116–139). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  124. Wheeler, Q. D., & Meier, R. (Eds.). (2000). Species concepts and phylogenetic theory. New York: Columbia University Press.Google Scholar
  125. Wiley, E. O. (1981). Phylogenetics: The theory and practice of phylogenetic systematics. New York: Wiley.Google Scholar
  126. Wilkerson, T. E. (1988). Natural kinds. Philosophy, 63, 29–42.CrossRefGoogle Scholar
  127. Wilkerson, T. E. (1995). Natural kinds. Aldershot: Avebury.Google Scholar
  128. Wilkerson, T. E. (1998). Recent work: Natural kinds. Philosophical Books, 39, 225–233.CrossRefGoogle Scholar
  129. Wilkins, J. S. (2003). How to be a chaste species pluralist-realist: The origins of species modes and the synapomorphic species concept. Biology and Philosophy, 18, 621–638.CrossRefGoogle Scholar
  130. Wilkins, J. S. (2009a). Species: A history of the idea. Berkeley: University of California Press.Google Scholar
  131. Wilkins, J. S. (2009b). Defining species: A sourcebook from antiquity to today. New York: Peter Lang.Google Scholar
  132. Wilkins, J. S. (2011). ‘Philosophically speaking, how many species concepts are there? Zootaxa, 2765, 58–60.Google Scholar
  133. Wilkins, J. S. (forthcoming). What is systematics and what is taxonomy.Google Scholar
  134. Williams, G. C. (1966). Adaptation and natural selection. Princeton, NJ: Princeton University Press.Google Scholar
  135. Wilson, R. A. (1999). Species: New interdisciplinary essays. Cambridge, MA: MIT Press.Google Scholar
  136. Wouters, A. G. (2003). Four notions of biological function. Studies in History and Philosophy of Biological and Biomedical Sciences, 34, 633–668.CrossRefGoogle Scholar
  137. Wouters, A. G. (2005). The function debate in philosophy. Acta Biotheoretica, 53, 123–151.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Philosophy and Center for Philosophy and Ethics of Science (ZEWW)Leibniz Universität HannoverHannoverGermany

Personalised recommendations